4种深度学习图像分类算法在人工智能硅藻检验中的比较
朱永正, 张吉, 程奇, 于慧潇, 邓恺飞, 张建华, 秦志强, 赵建, 孙俊红, 黄平

Comparison among Four Deep Learning Image Classification Algorithms in AI-based Diatom Test
Yong-zheng ZHU, Ji ZHANG, Qi CHENG, Hui-xiao YU, Kai-fei DENG, Jian-hua ZHANG, Zhi-qiang QIN, Jian ZHAO, Jun-hong SUN, Ping HUANG
图5 4种最优模型的混淆矩阵、召回率和特异性
A:VGG16;B:ResNet50;C:InceptionV3;D:Inception-ResNet-V2。TPR表示真阳性率(true positive rate),FPR表示假阳性率(false positive rate),TNR表示真阴性率(true negative rate),FNR表示假阴性率(false negative rate)。
Fig. 5 The confusion matrixes, recall rate and specificity of 4 optimal models