法医学杂志 ›› 2024, Vol. 40 ›› Issue (4): 340-351.DOI: 10.12116/j.issn.1004-5619.2023.330101
• 论著 • 上一篇
收稿日期:
2023-01-13
发布日期:
2024-11-08
出版日期:
2024-08-25
通讯作者:
李波
作者简介:
聂宗炀(1992—),男,硕士,主要从事毒品毒物检验鉴定和研究;E-mail:344920396@qq.com
Zong-yang NIE(), Wei HU, Ling-yu LI, Qing-bo ZHANG, Xin HUANG, Bo LI(
)
Received:
2023-01-13
Online:
2024-11-08
Published:
2024-08-25
Contact:
Bo LI
摘要:
目的 建立3种疑似新精神活性物质(new psychoactive substance,NPS)的结构确证方法,探索一种较为通用的定性检验方法。 方法 利用红外吸收光谱、气相色谱-质谱(gas chromatography-mass spectrometry,GC-MS)、核磁共振氢谱(1H-nuclear magnetic resonance spectroscopy,1H-NMR)、核磁共振碳谱(13C-nuclear magnetic resonance spectroscopy,13C-NMR)、核磁共振氟谱(19F-nuclear magnetic resonance spectroscopy,19F-NMR)等技术对公安机关送检的5份疑似含有NPS的检材进行成分鉴定及结构确证。 结果 送检的5份检材中均检出NPS,共有3种于2024年7月1日被列管的NPS,分别为甲基胺酮(又称2-MDCK)、2-乙氨基-2-(2-氟苯基)环己酮(又称2-FXE)、1-[3,4-(亚甲二氧基)苯基]-2-二甲氨基-1-戊酮(又称dipentylone),前两者属于苯环己哌啶类NPS,第三种属于合成卡西酮类NPS。 结论 本研究较为系统地介绍了3种NPS的红外吸收光谱、核磁共振波谱和质谱等表征手段的区分特征,可为未知毒品的定性鉴定提供参考。
中图分类号:
聂宗炀, 胡伟, 李玲玉, 章青波, 黄欣, 李波. 3种新精神活性物质的结构确证及未知毒品的定性鉴定[J]. 法医学杂志, 2024, 40(4): 340-351.
Zong-yang NIE, Wei HU, Ling-yu LI, Qing-bo ZHANG, Xin HUANG, Bo LI. Structure Confirmation of Three New Psychoactive Substances and Qualitative Identification of Unknown Substances[J]. Journal of Forensic Medicine, 2024, 40(4): 340-351.
位置 | δC/×10-6 | δH/×10-6 | 质子数 | 峰型 |
---|---|---|---|---|
1 | 58.5 | 3.12(J=11.3、3.9 Hz) | 1 | 三重三重峰 |
2 | 30.3 | 2.25~2.16 | 2 | 多重峰 |
3 | 25.6 | 1.50~1.30 | 2 | 多重峰 |
4 | 26.1 | 1.78~1.67,1.33~1.13 | 2 | 多重峰 |
5 | 25.6 | 1.50~1.30 | 2 | 多重峰 |
6 | 30.3 | 1.97~1.84 | 2 | 多重峰 |
7 | 49.4 | 4.22 | 2 | 单峰 |
8 | 132.9 | / | / | / |
9 | 130.3 | 7.57~7.39 | 1 | 多重峰 |
10 | 130.9 | 7.57~7.39 | 1 | 多重峰 |
11 | 130.6 | 7.57~7.39 | 1 | 多重峰 |
12 | 130.9 | 7.57~7.39 | 1 | 多重峰 |
13 | 130.3 | 7.57~7.39 | 1 | 多重峰 |
表1 化合物A的1H-NMR和13C-NMR测定结果
Tab. 1 Results of 1H-NMR and 13C-NMR for compound A
位置 | δC/×10-6 | δH/×10-6 | 质子数 | 峰型 |
---|---|---|---|---|
1 | 58.5 | 3.12(J=11.3、3.9 Hz) | 1 | 三重三重峰 |
2 | 30.3 | 2.25~2.16 | 2 | 多重峰 |
3 | 25.6 | 1.50~1.30 | 2 | 多重峰 |
4 | 26.1 | 1.78~1.67,1.33~1.13 | 2 | 多重峰 |
5 | 25.6 | 1.50~1.30 | 2 | 多重峰 |
6 | 30.3 | 1.97~1.84 | 2 | 多重峰 |
7 | 49.4 | 4.22 | 2 | 单峰 |
8 | 132.9 | / | / | / |
9 | 130.3 | 7.57~7.39 | 1 | 多重峰 |
10 | 130.9 | 7.57~7.39 | 1 | 多重峰 |
11 | 130.6 | 7.57~7.39 | 1 | 多重峰 |
12 | 130.9 | 7.57~7.39 | 1 | 多重峰 |
13 | 130.3 | 7.57~7.39 | 1 | 多重峰 |
位置 | δC/×10-6 | δH/×10-6 | 质子数 | 峰型 |
---|---|---|---|---|
1 | 210.7 | / | / | / |
2 | 36.6 | 2.61~2.44 | 2 | 多重峰 |
3 | 27.5 | 1.99~1.72 | 2 | 多重峰 |
4 | 22.8 | 1.99~1.72 | 2 | 多重峰 |
5 | 30.7 | 3.42,2.19~2.08 | 2 | 多重峰 |
6 | 74.3 | / | / | / |
7 | 139.5 | / | / | / |
8 | 129.0 | / | / | / |
9 | 132.1 | 7.79~7.70 | 1 | 多重峰 |
10 | 131.2 | 7.42~7.34 | 1 | 多重峰 |
11 | 128.5 | 7.53~7.43 | 1 | 多重峰 |
12 | 135.2 | 7.53~7.43 | 1 | 多重峰 |
13 | 21.4 | 2.24 | 3 | 单峰 |
14 | 40.8 | 2.33 | 3 | 单峰 |
表2 化合物B的1H-NMR和13C-NMR测定结果
Tab. 2 Results of 1H-NMR and 13C-NMR for compound B
位置 | δC/×10-6 | δH/×10-6 | 质子数 | 峰型 |
---|---|---|---|---|
1 | 210.7 | / | / | / |
2 | 36.6 | 2.61~2.44 | 2 | 多重峰 |
3 | 27.5 | 1.99~1.72 | 2 | 多重峰 |
4 | 22.8 | 1.99~1.72 | 2 | 多重峰 |
5 | 30.7 | 3.42,2.19~2.08 | 2 | 多重峰 |
6 | 74.3 | / | / | / |
7 | 139.5 | / | / | / |
8 | 129.0 | / | / | / |
9 | 132.1 | 7.79~7.70 | 1 | 多重峰 |
10 | 131.2 | 7.42~7.34 | 1 | 多重峰 |
11 | 128.5 | 7.53~7.43 | 1 | 多重峰 |
12 | 135.2 | 7.53~7.43 | 1 | 多重峰 |
13 | 21.4 | 2.24 | 3 | 单峰 |
14 | 40.8 | 2.33 | 3 | 单峰 |
位置 | δC/×10-6 | δF/×10-6 | δH/×10-6 | 质子数 | 峰型 |
---|---|---|---|---|---|
1 | 205.0(d,J=1.2 Hz) | / | / | / | / |
2 | 38.3 | / | 3.01~2.88,2.76~2.63 | 2 | 多重峰 |
3 | 28.6 | / | 2.13~2.06,1.85~1.74 | 2 | 多重峰 |
4 | 21.5 | / | 1.98~1.88,1.71~1.55 | 2 | 多重峰 |
5 | 35.8 | / | 3.48~3.37,2.25~2.15 | 2 | 多重峰 |
6 | 69.8(d,J=1.6 Hz) | / | / | / | / |
7 | 118.4(d,J=11.7 Hz) | / | / | / | / |
8 | 161.3(d,J=248.0 Hz) | 109.54 | / | / | / |
9 | 116.9(d,J=23.0 Hz) | / | 7.43~7.33(J=11.9、8.3、1.3 Hz) | 1 | 双重双重双重峰 |
10 | 133.5(d,J=9.3 Hz) | / | 7.76~7.66(J=8.5、7.0、5.2、1.6 Hz,1H) | 1 | 双重双重双重双重峰 |
11 | 126.0(d,J=3.2 Hz) | / | 7.57~7.49(J=7.7、1.3 Hz) | 1 | 三重双重峰 |
12 | 130.5(d,J=12.6 Hz) | / | 7.99~7.90(J=8.0、1.7 Hz) | 1 | 三重双重峰 |
13 | 38.8(d,J=3.0 Hz) | / | 2.63~2.49 | 2 | 多重峰 |
14 | 10.6 | / | 1.36~1.28(J=7.3 Hz) | 3 | 三重峰 |
表3 化合物C的1H-NMR、13C-NMR和19F-NMR测定结果
Tab. 3 Results of 1H-NMR, 13C-NMR and 19F-NMR for compound C
位置 | δC/×10-6 | δF/×10-6 | δH/×10-6 | 质子数 | 峰型 |
---|---|---|---|---|---|
1 | 205.0(d,J=1.2 Hz) | / | / | / | / |
2 | 38.3 | / | 3.01~2.88,2.76~2.63 | 2 | 多重峰 |
3 | 28.6 | / | 2.13~2.06,1.85~1.74 | 2 | 多重峰 |
4 | 21.5 | / | 1.98~1.88,1.71~1.55 | 2 | 多重峰 |
5 | 35.8 | / | 3.48~3.37,2.25~2.15 | 2 | 多重峰 |
6 | 69.8(d,J=1.6 Hz) | / | / | / | / |
7 | 118.4(d,J=11.7 Hz) | / | / | / | / |
8 | 161.3(d,J=248.0 Hz) | 109.54 | / | / | / |
9 | 116.9(d,J=23.0 Hz) | / | 7.43~7.33(J=11.9、8.3、1.3 Hz) | 1 | 双重双重双重峰 |
10 | 133.5(d,J=9.3 Hz) | / | 7.76~7.66(J=8.5、7.0、5.2、1.6 Hz,1H) | 1 | 双重双重双重双重峰 |
11 | 126.0(d,J=3.2 Hz) | / | 7.57~7.49(J=7.7、1.3 Hz) | 1 | 三重双重峰 |
12 | 130.5(d,J=12.6 Hz) | / | 7.99~7.90(J=8.0、1.7 Hz) | 1 | 三重双重峰 |
13 | 38.8(d,J=3.0 Hz) | / | 2.63~2.49 | 2 | 多重峰 |
14 | 10.6 | / | 1.36~1.28(J=7.3 Hz) | 3 | 三重峰 |
位置 | δC/×10-6 | δH/×10-6 | 质子数 | 峰型 |
---|---|---|---|---|
1 | 130.3 | / | / | / |
2 | 109.4 | 7.52(J=1.8 Hz) | 1 | 双重峰 |
3 | 150.3 | / | / | / |
4 | 155.3 | / | / | / |
5 | 108.7 | 7.03(J=8.2 Hz) | 1 | 双重峰 |
6 | 127.4 | 7.77(J=8.3、1.8 Hz) | 1 | 双重双重峰 |
7 | 104.0 | 6.14 | 2 | 单峰 |
8 | 194.7 | / | / | / |
9 | 70.0 | 5.24(J=6.6、4.6 Hz) | 1 | 双重双重峰 |
10 | 32.2 | 2.08~2.00,2.03~1.95 | 2 | 多重峰 |
11 | 18.3 | 1.21(J=26.7、13.4、10.7、7.0 Hz) | 2 | 双重三重双重双重峰 |
12 | 14.0 | 0.89(J=7.3 Hz) | 3 | 三重峰 |
13 | 48.9 | 2.95 | 3 | 单峰 |
14 | 48.9 | 2.95 | 3 | 单峰 |
表4 化合物D的1H-NMR和13C-NMR测定结果
Tab. 4 Results of 1H-NMR and 13C-NMRfor compound D
位置 | δC/×10-6 | δH/×10-6 | 质子数 | 峰型 |
---|---|---|---|---|
1 | 130.3 | / | / | / |
2 | 109.4 | 7.52(J=1.8 Hz) | 1 | 双重峰 |
3 | 150.3 | / | / | / |
4 | 155.3 | / | / | / |
5 | 108.7 | 7.03(J=8.2 Hz) | 1 | 双重峰 |
6 | 127.4 | 7.77(J=8.3、1.8 Hz) | 1 | 双重双重峰 |
7 | 104.0 | 6.14 | 2 | 单峰 |
8 | 194.7 | / | / | / |
9 | 70.0 | 5.24(J=6.6、4.6 Hz) | 1 | 双重双重峰 |
10 | 32.2 | 2.08~2.00,2.03~1.95 | 2 | 多重峰 |
11 | 18.3 | 1.21(J=26.7、13.4、10.7、7.0 Hz) | 2 | 双重三重双重双重峰 |
12 | 14.0 | 0.89(J=7.3 Hz) | 3 | 三重峰 |
13 | 48.9 | 2.95 | 3 | 单峰 |
14 | 48.9 | 2.95 | 3 | 单峰 |
序号 | 波数/cm-1 | 振动类型 | 结构归属 |
---|---|---|---|
1 | 2 920 | C-H伸缩振动 | 甲基CH3 |
2 | 2 734、2 440 | N-H伸缩振动 | 仲胺盐NH2+ |
3 | 1 590、1 498 | C=H伸缩振动 | 苯环 |
4 | 1 450 | C-H弯曲振动 | 环己烷 |
5 | 1 213 | C-N伸缩振动 | 仲胺盐C-NH2+ |
6 | 747 | =C-H弯曲振动 | 苯环 |
7 | 691 | N-H弯曲振动 | 仲胺盐NH2+ |
表5 化合物A的红外吸收光谱分析结果
Tab. 5 Analysis results of infrared absorptionspectrum for compound A
序号 | 波数/cm-1 | 振动类型 | 结构归属 |
---|---|---|---|
1 | 2 920 | C-H伸缩振动 | 甲基CH3 |
2 | 2 734、2 440 | N-H伸缩振动 | 仲胺盐NH2+ |
3 | 1 590、1 498 | C=H伸缩振动 | 苯环 |
4 | 1 450 | C-H弯曲振动 | 环己烷 |
5 | 1 213 | C-N伸缩振动 | 仲胺盐C-NH2+ |
6 | 747 | =C-H弯曲振动 | 苯环 |
7 | 691 | N-H弯曲振动 | 仲胺盐NH2+ |
序号 | 波数/cm-1 | 振动类型 | 结构归属 |
---|---|---|---|
1 | 2 909、2 874 | C-H伸缩振动 | 甲基CH3 |
2 | 2 682、2 449 | N-H伸缩振动 | 仲胺盐NH2+ |
3 | 1 720 | C=O伸缩振动 | 羰基C=O |
4 | 1 580、1 495 | C=H伸缩振动 | 苯环 |
5 | 1 457 | C-H弯曲振动 | 环己烷 |
6 | 1 118 | C-N伸缩振动 | 仲胺盐C-NH2+ |
7 | 766 | =C-H弯曲振动 | 苯环 |
表6 化合物B的红外吸收光谱分析结果
Tab. 6 Analysis results of infrared absorptionspectrum for compound B
序号 | 波数/cm-1 | 振动类型 | 结构归属 |
---|---|---|---|
1 | 2 909、2 874 | C-H伸缩振动 | 甲基CH3 |
2 | 2 682、2 449 | N-H伸缩振动 | 仲胺盐NH2+ |
3 | 1 720 | C=O伸缩振动 | 羰基C=O |
4 | 1 580、1 495 | C=H伸缩振动 | 苯环 |
5 | 1 457 | C-H弯曲振动 | 环己烷 |
6 | 1 118 | C-N伸缩振动 | 仲胺盐C-NH2+ |
7 | 766 | =C-H弯曲振动 | 苯环 |
序号 | 波数/cm-1 | 振动类型 | 结构归属 |
---|---|---|---|
1 | 2 950 | C-H伸缩振动 | 甲基CH3 |
2 | 2 673、2 331 | N-H伸缩振动 | 仲胺盐NH2+ |
3 | 1 724 | C=O伸缩振动 | 羰基C=O |
4 | 1 610 | N-H弯曲振动 | 仲胺盐NH2+ |
5 | 1 560、1 491 | C=H伸缩振动 | 苯环 |
6 | 1 467 | C-H弯曲振动 | 环己烷 |
7 | 1 232 | C-F伸缩振动 | 氟代苯C-F |
8 | 1 103 | C-N伸缩振动 | 仲胺盐C-NH2+ |
9 | 766 | =C-H弯曲振动 | 苯环 |
表7 化合物C的红外吸收光谱分析结果
Tab. 7 Analysis results of infrared absorptionspectrum for compound C
序号 | 波数/cm-1 | 振动类型 | 结构归属 |
---|---|---|---|
1 | 2 950 | C-H伸缩振动 | 甲基CH3 |
2 | 2 673、2 331 | N-H伸缩振动 | 仲胺盐NH2+ |
3 | 1 724 | C=O伸缩振动 | 羰基C=O |
4 | 1 610 | N-H弯曲振动 | 仲胺盐NH2+ |
5 | 1 560、1 491 | C=H伸缩振动 | 苯环 |
6 | 1 467 | C-H弯曲振动 | 环己烷 |
7 | 1 232 | C-F伸缩振动 | 氟代苯C-F |
8 | 1 103 | C-N伸缩振动 | 仲胺盐C-NH2+ |
9 | 766 | =C-H弯曲振动 | 苯环 |
序号 | 波数/cm-1 | 振动类型 | 结构归属 |
---|---|---|---|
1 | 2 963 | C-H伸缩振动 | 甲基CH3 |
2 | 2 639 | N-H伸缩振动 | 叔胺盐NH2+ |
3 | 1 674 | C=O伸缩振动 | 羰基C=O |
4 | 1 612 | N-H弯曲振动 | 叔胺盐NH2+ |
5 | 1 504、1 359 | C=H伸缩振动 | 苯环 |
6 | 1 260 | C-O-C反称伸缩振动 | 胡椒环C-O-C |
7 | 1 096 | C-N伸缩振动 | 叔胺盐C-NH2+ |
8 | 1 034 | C-O-C对称伸缩振动 | 胡椒环C-O-C |
9 | 932 | C-H弯曲振动 | 胡椒环上O-CH2-O |
10 | 880 | C-H弯曲振动 | 胡椒环上相邻的2个C-H |
11 | 785 | =C-H弯曲振动 | 苯环 |
表8 化合物D的红外吸收光谱分析结果
Tab. 8 Analysis results of infrared absorptionspectrum for compound D
序号 | 波数/cm-1 | 振动类型 | 结构归属 |
---|---|---|---|
1 | 2 963 | C-H伸缩振动 | 甲基CH3 |
2 | 2 639 | N-H伸缩振动 | 叔胺盐NH2+ |
3 | 1 674 | C=O伸缩振动 | 羰基C=O |
4 | 1 612 | N-H弯曲振动 | 叔胺盐NH2+ |
5 | 1 504、1 359 | C=H伸缩振动 | 苯环 |
6 | 1 260 | C-O-C反称伸缩振动 | 胡椒环C-O-C |
7 | 1 096 | C-N伸缩振动 | 叔胺盐C-NH2+ |
8 | 1 034 | C-O-C对称伸缩振动 | 胡椒环C-O-C |
9 | 932 | C-H弯曲振动 | 胡椒环上O-CH2-O |
10 | 880 | C-H弯曲振动 | 胡椒环上相邻的2个C-H |
11 | 785 | =C-H弯曲振动 | 苯环 |
1 | 沈敏. 新精神活性物质的应对与挑战[J].法医学杂志,2021,37(4):453-458. doi:10.12116/j.issn.1004-5619.2021.310204 . |
SHEN M. The response and challenge of new psychoactive substances[J]. Fayixue Zazhi,2021,37(4):453-458. | |
2 | 栾佳琪,贾薇,花镇东,等. 核磁共振技术在新精神活性物质筛查中的应用[J].中国药科大学学报,2018,49(5):545-552. doi:10.11665/j.issn.1000-5048.20180505 . |
LUAN J Q, JIA W, HUA Z D, et al. Applications of nuclear magnetic resonance spectroscopy in the screening of new psychoactive substances[J]. Zhongguo Yaoke Daxue Xuebao,2018,49(5):545-552. | |
3 | 公安部禁毒情报技术中心. 可疑样品中毒品和易制毒化学品检验方法通用规则:JD/Y [S].北京:中国标准出版社,2021. |
Drug Intelligence and Forensic Center, Ministry of Public Security of the People’s Republic of China. Gene-ral rules for inspection methods of toxic and precursor chemicals in suspected samples: JD/Y [S]. Beijing: Standards Press of China,2021. | |
4 | 何天宇,胡胜华. 利用气相色谱-质谱法对氟胺酮的检验分析[J].武汉公安干部学院学报,2021,35(1):48-52. doi:10.3969/j.issn.1672-9390.2021.01.012 . |
HE T Y, HU S H. Analysis of flutamine by gas chromatography-mass spectrometry[J]. Wuhan Gongan Ganbu Xueyuan Xuebao,2021,35(1):48-52. | |
5 | 范一雷,陈显鑫,张宏建,等. 质谱识别新型合成苯环己哌啶类物质氟胺酮异构体[J].分析试验室,2023,42(3):338-343. doi:10.13595/j.cnki.issn1000-0720.2022.012403 . |
FAN Y L, CHEN X X, ZHANG H J, et al. Differentiation of novel synthetic phenylcyclohexyl piperidines fluamine isomers by mass spectrometry[J].Fenxi Shiyanshi,2023,42(3):338-343. | |
6 | FLEURY-BRÉGEOT N, RAUSHEL J, SANDROCK D L, et al. Rapid and efficient access to secondary arylmethylamines[J]. Chemistry,2012,18(31):9564-9570. doi:10.1002/chem.201200831 . |
7 | KRUEGEL A C, |
Gilgamesh Pharmaceuticals Inc.[US]. Arylcyclohexylamine derivatives and their use in the treatment of psychiatric disorders: US 2022/0041540 A1[P]. 2022-02-10. | |
8 | 吴波,郄一奇,杨乔,等. 盐酸氟胺酮的结构确证和核磁共振定量分析[J].刑事技术,2023,48(3):262-267. doi:10.16467/j.1008-3650.2022.0042 . |
WU B, QIE Y Q, YANG Q, et al. Structural confirmation and quantitative nuclear magnetic resonance analysis into 2-fluorodeschloroketamine hydrochloride[J]. Xingshi Jishu,2023,48(3):262-267. | |
9 | 朱国玉,王军,阎仁信,等. 缴获毒品中氯胺酮类似物2-(2-氟苯基)-2-甲基氨基-环己酮的检验[J].刑事技术,2020,45(6):628-632. doi:10.16467/j.1008-3650.2020.06.016 . |
ZHU G Y, WANG J, YAN R X, et al. Ketamine-analogous 2-(2-fluorophenyl)-2-methylaminocyclohe-xanone detected in the seized drugs[J]. Xingshi Jishu,2020,45(6):628-632. | |
10 | 吴永富,曾静,蔡玉刚,等. 一种新型苯环己哌啶衍生物氟胺酮的质谱分析及结构确证[J].刑事技术,2021,46(3):273-277. doi:10.16467/j.1008-3650.2021.0061 . |
WU Y F, ZENG J, CAI Y G, et al. Structural confirmation of F-ketamine (a novel phenyclohexidine derivative) with mass spectrometry and nuclear magnetic resonance[J]. Xingshi Jishu,2021,46(3):273-277. | |
11 | 邸玉敏,张凯,肖楠. 毒品稀释剂N-异丙基苄胺的检验[J].刑事技术,2012,37(2):63-64. doi:10.16467/j.1008-3650.2012.02.032 . |
DI Y M, ZHANG K, XIAO N. Determination of drug diluent N-isopropylbenzylamine[J]. Xingshi Jishu,2012,37(2):63-64. | |
12 | WALLACH J, BRANDT S D. 1,2-diarylethylamine- and ketamine-based new psychoactive substances[J]. Handb Exp Pharmacol,2018,252:305-352. doi:10.1007/164_2018_148 . |
13 | 王世玉,李崇熙. 麻醉活性物质——氟胺酮的合成[J].北京大学学报(自然科学版),1987,23(2):116-119. doi:10.13209/j.0479-8023.1987.032 . |
WANG S Y, LI C X. Synthesis of anesthetic active substance 2-fluorodeschloroketamine[J]. Beijing Daxue Xuebao (Natural science),1987,23(2):116- 119. | |
14 | Boehringer Sohn C. H.. Verfahren zur Herstellung von substituierten Phenyl-alpha-aminoketonen und deren Saeureadditionssalzen bzw. deren optischen Antipoden[P]. 1967-06-15. |
15 | KOLANOS R, SOLIS E JR, SAKLOTH F, et al. “Deconstruction” of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter[J]. ACS Chem Neurosci,2013,4(12):1524-1529. doi:10 . |
1021/cn 4001236. | |
16 | KUROPKA P, ZAWADZKI M, SZPOT P. A review of synthetic cathinones emerging in recent years (2019—2022)[J]. Forensic Toxicol,2023,41(1):25-46. doi:10.1007/s11419-022-00639-5 . |
17 | ESHLEMAN A J, NAGARAJAN S, WOLFRUM K M, et al. Structure-activity relationships of bath salt components: Substituted cathinones and benzofurans at biogenic amine transporters[J]. Psychopharmacology,2019,236(3):939-952. doi:10.1007/s00213- 018-5059-5 . |
18 | 贾薇,胡爽,李涛,等. 4种卡西酮类物质同分异构体的质谱特征研究[J].质谱学报,2023,44(3):412-423. doi:10.7538/zpxb.2022.0089 . |
JIA W, HU S, LI T, et al. Mass fragmentation characteristics of 4 synthetic cathinone isomers[J]. Zhi-pu Xuebao,2023,44(3):412-423. | |
19 | 邓乾亚,孙文娟,何思阳,等. 新精神活性物质Eutylone的鉴定[J].法医学杂志,2022,38(4):473-477. doi:10.12116/j.issn.1004-5619.2021.310503 . |
DENG Q Y, SUN W J, HE S Y, et al. Identification of the new psychoactive substance Eutylone[J]. Fayixue Zazhi,2022,38(4):473-477. | |
20 | 刘翠梅,韩煜,贾薇,等. 13种易制毒化学品红外光谱快速定性分析[J].光谱学与光谱分析,2019,39(5):1439-1444. doi:10.3964/j.issn.1000-0593(2019)05-1439-06 . |
LIU C M, HAN Y, JIA W, et al. Rapid qualitative analysis of 13 precursor chemicals by Fourier transform infrared spectroscopy (FTIR)[J]. Guangpuxue Yu Guangpu Fenxi,2019,39(5):1439-1444. | |
21 | 董新荣,李辉,杨建奎,等. 胡椒环的合成[J].化工技术与开发,2006,35(1):7-9. doi:10.3969/j.issn.1671-9905.2006.01.003 . |
DONG X R, LI H, YANG J K, et al. Synthesis of 1,3-benzodioxole[J]. Huagong Jishu Yu Kaifa,2006,35(1):7-9. | |
22 | 徐淑飞. 洋茉莉醛和新洋茉莉醛合成工艺研究[D].长春:吉林大学,2011. |
XU S F. Study on synthesis of heliotropine and helional[D]. Changchun: Jilin University,2011. |
[1] | 葛静晨, 尚敏, 姚明阳, 韦铭菲, 史俊展, 姚泽伟, 时佳音, 李凡. MSCT图像后处理技术在肋骨骨折畸形愈合认定中的应用[J]. 法医学杂志, 2024, 40(4): 324-329. |
[2] | 贾鹏, 孙宏杰, 沈景如, 吴建国, 孙健, 冼绍文, 杨博文, 黄培军, 李宇宏, 吴准, 易旭夫. 脾实质内假性动脉瘤损伤程度鉴定1例[J]. 法医学杂志, 2024, 40(3): 297-299. |
[3] | 李强, 黄效宇. 利用CT图像后处理技术及3D打印技术鉴定肋骨骨折1例[J]. 法医学杂志, 2024, 40(3): 303-305. |
[4] | 刘晋廷, 周莉英, 相佳宏, 李子怡, 谢婉婷, 贠克明, 施妍. 哌嗪类新精神活性物质体内检测研究进展[J]. 法医学杂志, 2024, 40(3): 276-283. |
[5] | 季萌萌, 张昇, 徐红平. 跖骨部分缺失残疾等级评定1例[J]. 法医学杂志, 2024, 40(3): 305-307. |
[6] | 杜珊珊, 陈焕. 交通事故后主动脉瓣穿孔法医学鉴定1例[J]. 法医学杂志, 2024, 40(3): 293-296. |
[7] | 马陈骏, 谭勇, 张清华. 日本法医学专业人才培养模式及其借鉴[J]. 法医学杂志, 2024, 40(3): 284-290. |
[8] | 袁盼盼, 郑瓯翔, 沈寒坚. 胰腺破裂损伤程度及因果关系鉴定1例[J]. 法医学杂志, 2024, 40(3): 300-302. |
[9] | 吴鹏, 剪宏伟, 王泽宇, 高学慧. 股骨颈纤维结构不良并骨折伤病关系及残疾等级评定1例[J]. 法医学杂志, 2024, 40(3): 308-310. |
[10] | 杨泽人, 高东, 夏晴, 冉聃, 盛延良, 夏文涛. 不同测试体位对屈腕、屈指肌群定量肌力的影响及其标准化[J]. 法医学杂志, 2024, 40(3): 237-244,253. |
[11] | 董黄勇, 张恒, 王伟, 鲍斌, 耿斌, 巩昌强, 徐振中, 沈基骏, 胡于军, 原帅, 乔正. 1,4-丁二醇中毒死亡的法医学鉴定1例[J]. 法医学杂志, 2024, 40(3): 311-313. |
[12] | 黄瑞亭, 陈新山. 宋慈精神与时代价值——纪念宋慈《洗冤集录》问世777周年[J]. 法医学杂志, 2024, 40(2): 192-195. |
[13] | 陈宁, 吴响, 沈寒坚. 肾破裂损伤程度及因果关系鉴定1例[J]. 法医学杂志, 2024, 40(2): 221-223. |
[14] | 陈霞, 施海燕, 李月江, 宋祥和, 孙勇. 双侧腹股沟斜疝合并小肠破裂损伤程度鉴定1例[J]. 法医学杂志, 2024, 40(2): 219-220. |
[15] | 杨继超, 刘平, 程亦斌. 下肢骨折与脑梗死的因果关系鉴定1例[J]. 法医学杂志, 2024, 40(2): 223-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||