Routine pathological examination of unexplained sudden cardiac death (USCD) lacks significant morphological characteristics. In the field of forensic medicine, molecular biology methods have been used to find the cause of death by detecting genes and research related to the mechanism of sudden cardiac death has been carried out. From the molecular pathology point of view, the application of multiple levels of biomarkers to resolve the causes of USCD has already shown potential and provides an important path for forensic identification of USCD. This article reviews the latest research progress on USCD-related genes, RNA, proteins and USCD, and summarizes forensic application.
HE Xiang-wang, LI Lin-feng, ZHANG Fu, YUN Li-bing. Research Progress on Molecular Markers Related to Unexplained Sudden Cardiac Death and Its Forensic Application. Journal of Forensic Medicine[J], 2021, 37(5): 687-693 DOI:10.12116/j.issn.1004-5619.2020.400507
BAGNALL R D, WEINTRAUB R G, INGLES J, et al. A prospective study of sudden cardiac death among children and young adults[J]. N Engl J Med,2016,374(25):2441-2452. doi:10.1056/NEJMoa1510687.
HENRIQUES DE GOUVEIA R H A M, CORTE REAL GONÇALVES F M A. Sudden cardiac death and valvular pathology[J]. Forensic Sci Res,2019,4(3):280-286. doi:10.1080/20961790.2019.1 595351.
CUNNINGHAM K S, SPEARS D A, CARE M. Evaluation of cardiac hypertrophy in the setting of sudden cardiac death[J]. Forensic Sci Res,2019,4(3):223-240. doi:10.1080/20961790.2019.1633761.
MORENTIN B, CALLADO L F. Sudden cardiac death associated to substances of abuse and psychotropic drugs consumed by young people:A population study based on forensic autopsies[J]. Drug Alcohol Dependence,2019,201:23-28. doi:10.1016/j.drugalcdep.2019.03.021.
ABRIEL H, ROUGIER JS, JALIFE J. Ion channel macromolecular complexes in cardiomyocytes:Roles in sudden cardiac death[J]. Circ Res,2015,116(12):1971-1988. doi:10.1161/CIRCRESAHA.116.305017.
SKINNER J R, WINBO A, ABRAMS D, et al. Channelopathies that lead to sudden cardiac death:Clinical and genetic aspects[J]. Heart Lung Circ,2019,28(1):22-30. doi:10.1016/j.hlc.2018.09.007.
WU Q, ZHAO Q, YIN K, et al. HCN4 gene variations in sudden unexplained nocturnal death syndrome in the southern Han Chinese population[J]. J Forensic Sci,2019,64(4):1112-1118. doi:10.1111/1556-4029.13958.
HAO B, SONG W P, WU F Y, et al. The regulation of TGF-β1 in cardiac death caused by variation of SCN5A gene[J]. Zhongguo Fayixue Zazhi,2017,32(3):290-293.
CHEN C, TAN Z, ZHU W, et al. Brugada syndrome with SCN5A mutations exhibits more pronounced electrophysiological defects and more severe prognosis:A meta-analysis[J]. Clin Genet,2020,97(1):198-208. doi:10.1111/cge.13552.
WANG Y, DU Y, LUO L, et al. Alterations of Nedd4-2-binding capacity in PY-motif of NaV1.5 channel underlie long QT syndrome and Brugada syndrome[J]. Acta Physiol (Oxf),2020,229(2):e13438. doi:10.1111/apha.13438.
KAPOOR A, LEE D, ZHU L K, et al. Multiple SCN5A variant enhancers modulate its cardiac gene expression and the QT interval[J]. Proc Natl Acad Sci USA,2019,116(22):10636-10645. doi:10.1073/pnas.1808734116.
SINGH S M, CASEY S A, BERG A A, et al. Autosomal-dominant biventricular arrhythmogenic cardiomyopathy in a large family with a novel in-frame DSP nonsense mutation[J]. Am J Med Genet Part A,2018,176(7):1622-1626. doi:10.1002/ajmg.a.38719.
HUANG L, WU K H, ZHANG L, et al. Critical roles of Xirp proteins in cardiac conduction and their rare variants identified in sudden unexplained nocturnal death syndrome and Brugada syndrome in Chinese Han population[J]. J Am Heart Assoc,2018,7(1):e006320. doi:10.1161/JAHA.117.006320.
GLÖCKLHOFER C R, STEINFURT J, FRANKE G, et al. A novel LMNA nonsense mutation causes two distinct phenotypes of cardiomyopathy with high risk of sudden cardiac death in a large five-generation family[J]. Europace,2018,20(12):2003-2013. doi:10.1093/europace/euy127.
ANDERSEN J D, JACOBSEN S B, TRUDSØ L C, et al. Whole genome and transcriptome sequencing of post-mortem cardiac tissues from sudden cardiac death victims identifies a gene regulatory variant in NEXN[J]. Int J Leg Med,2019,133(6):1699-1709. doi:10.1007/s00414-019-02127-9.
KYTÖVUORI L, JUNTTILA J, HUIKURI H, et al. Mitochondrial DNA variation in sudden cardiac death:A population-based study[J]. Int J Leg Med,2020,134(1):39-44. doi:10.1007/s00414-019-0209 1-4.
SALVARANI N, CRASTO S, MIRAGOLI M, et al. The K219T-Lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy[J]. Nat Commun,2019,10(1):2267. doi:10.1038/s41467-019-09929-w.
ZHANG L Y, TESTER D J, LANG D, et al. Does sudden unexplained nocturnal death syndrome remain the autopsy-negative disorder:A gross, microscopic, and molecular autopsy investigation in southern China[J]. Mayo Clin Proc,2016,91(11):1503-1514. doi:10.1016/j.mayocp.2016.06.031.
ZHAO Q H, CHEN Y L, PENG L L, et al. Identification of rare variants of DSP gene in sudden unexplained nocturnal death syndrome in the southern Chinese Han population[J]. Int J Leg Med,2016,130(2):317-322. doi:10.1007/s00414-015-1275-2.
LARSEN M K, CHRISTIANSEN S L, HERTZ C L, et al. Targeted molecular genetic testing in young sudden cardiac death victims from western Denmark[J]. Int J Leg Med,2020,134(1):111-121. doi:10.1007/s00414-019-02179-x.
BEZZINA C R, BARC J, MIZUSAWA Y, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death[J]. Nat Genet,2013,45(9):1044-1049. doi:10.1038/ng.2712.
MONASKY M M, MICAGLIO E, GIACHINO D, et al. Genotype-phenotype correlation in a family with Brugada syndrome harboring the Novel p.Gln371* Nonsense Variant in the SCN5A Gene[J]. Int J Mol Sci,2019,20(22):5522. doi:10.3390/ijms20225522.
MICAGLIO E, MONASKY M M, RESTA N, et al. Novel SCN5A p.W697X nonsense mutation segregation in a family with Brugada syndrome[J]. Int J Mol Sci,2019,20(19):4920. doi:10.3390/ijms20194920.
HASEBE H, YOKOYA T, MURAKOSHI N, et al. Pilsicainide administration unmasks a phenotype of brugada syndrome in a patient with overlap syndrome due to the E1784K SCN5A mutation[J]. Intern Med Tokyo Jpn,2020,59(1):83-87. doi:10.2169/internalmedicine.3430-19.
WLEKLINSKI M J, KANNANKERIL P J, KNOLL-MANN B C. Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia[J]. J Physiol,2020,598(14):2817-2834. doi:10.1113/JP276757.
MOSCU-GREGOR A, MARSCHALL C, MUNTJES C, et al. Novel variants in TECRL cause recessive inherited CPVT type 3 with severe and variable clinical symptoms[J]. J Cardiovasc Electrophysiol,2020,31(6):1527-1535. doi:10.1111/jce.14446.
GESSNER G, RUNGE S, KOENEN M, et al. ANK2 functionally interacts with KCNH2 aggravating long QT syndrome in a double mutation carrier[J]. Biochem Biophys Res Commun,2019,512(4):845-851. doi:10.1016/j.bbrc.2019.03.162.
DU F L, WANG G X, WANG D W, et al. Targeted next generation sequencing revealed a novel deletion-frameshift mutation of KCNH2 gene in a Chinese Han family with long QT syndrome:A case report and review of Chinese cases[J]. Medicine,2020,99(16):e19749. doi:10.1097/MD.00000 00000019749.
MANGUM K D, FERNS S J. A novel familial truncating mutation in the filamin C gene associated with cardiac arrhythmias[J]. Eur J Med Genet,2019,62(4):282-285. doi:10.1016/j.ejmg.2018.08.006.
CAO Z P, XUE J J, ZHANG Y, et al. Differential expression of B-type natriuretic peptide between left and right ventricles, with particular regard to sudden cardiac death[J]. Mol Med Rep,2017,16(4):4763-4769. doi:10.3892/mmr.2017.7136.
GONZÁLEZ-HERRERA L, MÁRQUEZ-RUIZ A B, SERRANO M J, et al. mRNA expression patterns in human myocardial tissue, pericardial fluid and blood, and its contribution to the diagnosis of cause of death[J]. Forensic Sci Int,2019,302:109876. doi:10.1016/j.forsciint.2019.109876.
WU F Y, GAI L L, KONG X P, et al. Research progress of the correlation between caveolin and unexpected sudden cardiac death[J]. Fayixue Zazhi,2017,33(3):284-288.
WANG Y C, MA D F, JIANG P, et al. Serum levels of homocysteine and circulating antioxidants associated with heart rate variability in patients with unstable angina pectoris[J]. Chin Med J,2019,132(1):96-99. doi:10.1097/CM9.00000000 00000007.
REZARI Y, PEIGHAMBARI M M, NAGHS-HBANDI S, et al. Postoperative atrial fibrillation following cardiac surgery: From pathogenesis to potential therapies[J]. Am J Cardiovasc Drugs,2020,20(1):19-49. doi:10.1007/s40256-019-00365-1.
FABIYI-EDEBOR T D. Vitamin C ameliorated cardiac autonomic neuropathy in type 2 diabetic rats[J]. World J Diabetes. 2020,11(3):52-65. doi:10.4239/wjd.v11.i3.52.
SHANG L X, ZHAO Y, ZHANG W H, et al. Correlation between hypoproteinemia and in-hospital sudden cardiac death in patients with acute myocardial infarction[J]. Zhonghua Shiyong Zhenduan Yu Zhiliao Zazhi,2018,32(8):764-766.
MATASIC D S, YOON J, MCLENDON J M, et al. Modulation of the cardiac sodium channel NaV1.5 peak and late currents by NAD+ precursors[J]. J Mol Cell Cardiol,2020,141:70-81. doi:10.1016/j.yjmcc. 2020.01.013.
BROUILLETTE J, CYR S, FISET C. Mechanisms of arrhythmia and sudden cardiac death in patients with HIV infection[J]. Can J Cardiol,2019,35(3):310-319. doi:10.1016/j.cjca.2018.12.015.
RYABKOVA V A, SHUBIK Y V, ERMAN M V, et al. Lethal immunoglobulins:Autoantibodies and sudden cardiac death[J]. Autoimmun Rev,2019,18(4):415-425. doi:10.1016/j.autrev.2018.12.005.
XUE Y, ZHAO R, DU S H, et al. Decreased mRNA levels of cardiac Cx43 and ZO1 in sudden cardiac death related to coronary atherosclerosis:A pilot study[J]. Int J Leg Med,2016,130(4):915-922. doi:10.1007/s00414-016-1353-0.
YIN Z X, GUO Y D, ZHANG J H, et al. Association between an indel polymorphism in the 3’UTR of COL1A2 and the risk of sudden cardiac death in Chinese populations[J]. Leg Med (Tokyo),2017,28:22-26. doi:10.1016/j.legalmed.2017.07.006.
ZOU Y, ZHANG Q, ZHANG J, et al. A common indel polymorphism of the Desmoglein-2 (DSG2) is associated with sudden cardiac death in Chinese populations[J]. Forensic Sci Int,2019,301:382-387. doi:10.1016/j.forsciint.2019.06.008.
ZHOU A, SHI G, KANG G J, et al. RNA binding protein, HuR, regulates SCN5A expression through stabilizing MEF2C transcription factor mRNA[J]. J Am Heart Assoc,2018,7(9):e007802. doi:10.1161/JAHA.117.007802.
KING V M, BORCHERT G M. MicroRNA expression: Protein participants in microRNA regulation[J]. Methods Mol Biol Clifton N J,2017,1617:27-37. doi:10.1007/978-1-4939-7046-9_2.
DAIMI H, KHELIL A H, NEJI A, et al. Role of SCN5A coding and non-coding sequences in Brugada syndrome onset: What’s behind the scenes?[J]. Biomed J,2019,42(4):252-260. doi:10.1016/j.bj.2019.03.003.
TAFTI M F, KHATAMI M, REZAEI S, et al. Novel and heteroplasmic mutations in mitochondrial tRNA genes in Brugada syndrome[J]. Cardiol J,2018,25(1):113-119. doi:10.5603/CJ.a2017.0104.
YANG Y H, LIU D Y, WANG L, et al. Long non-coding RNA microRNA, circular RNA research progress in sudden cardiac disease[J]. Zhongguo Fayixue Zazhi,2018,33(4):390-393.
ZHANG X M, YOON J Y, MORLEY M, et al. A common variant alters SCN5A-miR-24 interaction and associates with heart failure mortality[J]. J Clin Investig,2018,128(3):1154-1163. doi:10.1172/JCI95710.
HUANG S Q, TAO W Q, GUO Z F, et al. Suppression of long noncoding RNA TTTY15 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-455-5p[J]. Gene,2019,701:1-8. doi:10.1016/j.gene.2019.02.098.
ZHANG Q H, WANG F S, WANG F H, et al. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway[J]. J Cell Physiol,2020,235(1):245-253. doi:10.1002/jcp.28964.
LI G L, LIU D Y, YANG Y H, et al. The expression of miR-17,HIF-1α and STAT3 and their correlation in myocardial tissue of cardiac sudden death[J]. Zhongguo Fayixue Zazhi,2019,34(6):562-566.
YANG Y H, YANG C W, HAN Z L, et al. Expression and significance of mircoRNA-21 and its target genes RECK and Smad7 in myocardial tissue in sudden cardiac death[J]. Jingzhun Yixue Zazhi,2019,34(6):529-532,536.