1 |
KROUS H F, BECKWITH J B, BYARD R W, et al. Sudden infant death syndrome and unclassified sudden infant deaths: A definitional and diagnostic approach[J]. Pediatrics,2004,114(1):234-238. doi:10.1542/peds.114.1.234 .
|
2 |
MOON R Y, HORNE R S C, HAUCK F R. Sudden infant death syndrome[J]. Lancet,2007,370(9598):1578-1587. doi:10.1016/S0140-6736(07)61662-6 .
|
3 |
FARD D, LÄER K, ROTHÄMEL T, et al. Candidate gene variants of the immune system and sudden infant death syndrome[J]. Int J Legal Med,2016,130(4):1025-1033. doi:10.1007/s00414-016-1347-y .
|
4 |
MULHOLLAND K, TEMPLE B. Causes of death in children younger than 5 years in China in 2008[J]. Lancet,2010,376(9735):89. doi:10.1016/S0140-6736(10)61073-2 .
|
5 |
KEYWAN C, PODURI A H, GOLDSTEIN R D, et al. Genetic factors underlying sudden infant death syndrome[J]. Appl Clin Genet,2021,14:61-76. doi:10.2147/TACG.S239478 .
|
6 |
胡丙杰,陈玉川,祝家镇,等. 婴幼儿猝死综合征心传导系统的免疫组化研究[J].法医学杂志,1996,12(4):193-194,199.
|
|
HU B J, CHEN Y C, ZHU J Z, et al. Immunohistochemical study of the cardiac conduction system in sudden infant death syndrome[J]. Fayixue Zazhi,1996,12(4):193-194,199.
|
7 |
CHENG J, VAN NORSTRAND D W, MEDEIROS-DOMINGO A, et al. Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current[J]. Circ Arrhythm Electrophysiol,2009,2(6):667-676. doi:10.1161/CIRCEP.109.891440 .
|
8 |
李玲,黄光照,沈忆文,等. 婴儿猝死综合征的法医学鉴定[J].法医学杂志,2008,24(5):361-364. doi:10.3969/j.issn.1004-5619.2008.05.015 .
|
|
LI L, HUANG G Z, SHEN Y W, et al. Sudden infant death syndrome (SIDS) and its forensic investigation[J]. Fayixue Zazhi,2008,24(5):361-364.
|
9 |
FILIANO J J, KINNEY H C. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: The triple-risk model[J]. Biol Neonate,1994,65(3/4):194-197. doi:10.1159/000244052 .
|
10 |
NEUBAUER J, LECCA M R, RUSSO G, et al. Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases[J]. Eur J Hum Genet,2017,25(4):404-409. doi:10.1038/ejhg.2016.199 .
|
11 |
HAFKE A, SCHÜRMANN P, ROTHÄMEL T, et al. Evidence for an association of interferon gene variants with sudden infant death syndrome[J]. Int J Legal Med,2019,133(3):863-869. doi:10.1007/s00414-018-1974-6 .
|
12 |
BROWNSTEIN C A, GOLDSTEIN R D, THOMP-SON C H, et al. SCN1A variants associated with sudden infant death syndrome[J]. Epilepsia,2018,59(4):e56-e62. doi:10.1111/epi.14055 .
|
13 |
ALFELALI M, KHANDAKER G. Infectious causes of sudden infant death syndrome[J]. Paediatr Respir Rev,2014,15(4):307-311. doi:10.1016/j.prrv.2014.09.004 .
|
14 |
GOLDWATER P N. SIDS, prone sleep position and infection: An overlooked epidemiological link in current SIDS research? Key evidence for the “Infection Hypothesis”[J]. Med Hypotheses,2020,144:110114. doi:10.1016/j.mehy.2020.110114 .
|
15 |
MORRIS J A. The common bacterial toxins hypothesis of sudden infant death syndrome[J]. FEMS Immunol Med Microbiol,1999,25(1/2):11-17. doi:10.1111/j.1574-695X.1999.tb01322.x .
|
16 |
FERRANTE L, ROGNUM T O, VEGE Å, et al. Altered gene expression and possible immunodeficiency in cases of sudden infant death syndrome[J]. Pediatr Res,2016,80(1):77-84. doi:10.1038/pr.2016.45 .
|
17 |
FERRANTE L, OPDAL S H, NYGÅRD S, et al. Gene expression profile in cases of infectious death in infancy[J]. Pediatr Res,2021,89(3):483-487. doi:10.1038/s41390-020-0896-4 .
|
18 |
PHIPSON B, LEE S, MAJEWSKI I J, et al. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression[J]. Ann Appl Stat,2016,10(2):946-963. doi:10.1214/16-AOAS920 .
|
19 |
YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: An R package for comparing biological themes among gene clusters[J]. OMICS,2012,16(5):284-287. doi:10.1089/omi.2011.0118 .
|
20 |
SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nu-cleic Acids Res,2019,47(D1):D607-D613. doi:10.1093/nar/gky1131 .
|
21 |
LAZZERINI P E, LAGHI-PASINI F, BOUTJDIR M, et al. Cardioimmunology of arrhythmias: The role of autoimmune and inflammatory cardiac channelopathies[J]. Nat Rev Immunol,2019,19(1):63-64. doi:10.1038/s41577-018-0098-z .
|
22 |
LAZZERINI P E, CAPECCHI P L, EL-SHERIF N, et al. Emerging arrhythmic risk of autoimmune and inflammatory cardiac channelopathies[J]. J Am Heart Assoc,2018,7(22):e010595. doi:10.1161/JAHA.118.010595 .
|
23 |
LAZZERINI P E, CAPECCHI P L, LAGHI-PASINI F. Long QT syndrome: An emerging role for inflammation and immunity[J]. Front Cardiovasc Med,2015,2:26. doi:10.3389/fcvm.2015.00026 .
|
24 |
HIGHET A R. An infectious aetiology of sudden infant death syndrome[J]. J Appl Microbiol,2008,105(3):625-635. doi:10.1111/j.1365-2672.2008.03747.x .
|
25 |
OPDAL S H. IL-10 gene polymorphisms in infectious disease and SIDS[J]. FEMS Immunol Med Microbiol,2004,42(1):48-52. doi:10.1016/j.femsim.2004.06.006 .
|
26 |
VEGE A, ROGNUM T O, ANESTAD G. IL-6 cerebrospinal fluid levels are related to laryngeal IgA and epithelial HLA-DR response in sudden infant death syndrome[J]. Pediatr Res,1999,45(6):803-809. doi:10.1203/00006450-199906000-00004 .
|
27 |
CHANG H. Cleave but not leave: Astrotactin proteins in development and disease[J]. IUBMB Life,2017,69(8):572-577. doi:10.1002/iub.1641 .
|
28 |
CHEN Q F, SHI F, HUANG T, et al. ASTN1 is associated with immune infiltrates in hepatocellular carcinoma, and inhibits the migratory and invasive capacity of liver cancer via the Wnt/β‑catenin signaling pathway[J]. Oncol Rep,2020,44(4):1425-1440. doi:10.3892/or.2020.7704 .
|
29 |
IWAKAWA R, KOHNO T, TOTOKI Y, et al. Expression and clinical significance of genes frequently mutated in small cell lung cancers defined by whole exome/RNA sequencing[J]. Carcinogenesis,2015,36(6):616-621. doi:10.1093/carcin/bgv026 .
|
30 |
DU Y, HU Y, WEN N, et al. Abnormal expression of TGFBR2, EGF, LRP10, and IQGAP1 is involved in the pathogenesis of coronary artery disease[J]. Rev Cardiovasc Med,2021,22(3):947-958. doi:10 .
|
|
31083/j.rcm 2203103.
|
31 |
MCMANUS D D, RONG J, HUAN T, et al. Messenger RNA and microRNA transcriptomic signatures of cardiometabolic risk factors[J]. BMC Genomics,2017,18(1):139. doi:10.1186/s12864-017-3533-9 .
|
32 |
FATIMA A, HOEBER J, SCHUSTER J, et al. Monoallelic and bi-allelic variants in NCDN cause neurodevelopmental delay, intellectual disability, and epilepsy[J]. Am J Hum Genet,2021,108(4):739-748. doi:10.1016/j.ajhg.2021.02.015 .
|
33 |
RAMIRO L, GARCÍA-BERROCOSO T, BRIANSÓ F, et al. Integrative multi-omics analysis to characterize human brain ischemia[J]. Mol Neurobiol,2021,58(8):4107-4121. doi:10.1007/s12035-021-02401-1 .
|
34 |
PANTARELLI C, PAN D, CHETWYND S, et al. The GPCR adaptor protein norbin suppresses the neutrophil-mediated immunity of mice to pneumococcal infection[J]. Blood Adv,2021,5(16):3076-3091. doi:10.1182/bloodadvances.2020002782 .
|
35 |
MISKE R, GROSS C C, SCHARF M, et al. Neurochondrin is a neuronal target antigen in autoimmune cerebellar degeneration[J]. Neurol Neuroimmunol Neuroinflamm,2016,4(1):e307. doi:10.1212/NXI.0000000000000307 .
|
36 |
ZHANG W, REN H, FANG F, et al. Neurochondrin antibody serum positivity in three cases of autoimmune cerebellar ataxia[J]. Cerebellum,2019,18(6):1137-1142. doi:10.1007/s12311-019-01048-y .
|
37 |
GHALEB A M, YANG V W. Krüppel-like factor 4 (KLF4): What we currently know[J]. Gene,2017,611:27-37. doi:10.1016/j.gene.2017.02.025 .
|
38 |
LUO W W, LIAN H, ZHONG B, et al. Krüppel-like factor 4 negatively regulates cellular antiviral immune response[J]. Cell Mol Immunol,2016,13(1):65-72. doi:10.1038/cmi.2014.125 .
|
39 |
冯衍生,刘梅冬,刘瑛,等. Kruppel样因子4对内毒素所致IL-6基因表达的调控及机制研究[J].生物化学与生物物理进展,2009,36(10):1313-1318. doi:10.3724/
|
|
SP.J.1206.2009.00168.
|
|
FENG Y S, LIU M D, LIU Y, et al. Role of kruppel-like factor 4 in regulating the expression of IL-6 induced by LPS[J]. Shengwu Huaxue Yu Shengwu Wuli Jinzhan,2009,36(10):1313-1318.
|
40 |
LIU J, YANG T, LIU Y, et al. Krüppel-like factor 4 inhibits the expression of interleukin-1 beta in lipopolysaccharide-induced RAW264.7 macrophages[J]. FEBS Lett,2012,586(6):834-840. doi:10.1016/j.febslet.2012.02.003 .
|
41 |
LIU J, ZHANG H, LIU Y, et al. KLF4 regulates the expression of interleukin-10 in RAW264.7 macrophages[J]. Biochem Biophys Res Commun,2007,362(3):575-581. doi:10.1016/j.bbrc.2007.07.157 .
|
42 |
YOSHIDA T, HAYASHI M. Role of Krüppel-like factor 4 and its binding proteins in vascular disease[J]. J Atheroscler Thromb,2014,21(5):402-413. doi:10 .
|
|
5551/jat.23044.
|
43 |
BAGNALL R D, WEINTRAUB R G, INGLES J, et al. A prospective study of sudden cardiac death among children and young adults[J]. N Engl J Med,2016,374(25):2441-2452. doi:10.1056/NEJMoa1 510687 .
|
44 |
LAPPALAINEN P, KOTILA T, JÉGOU A, et al. Biochemical and mechanical regulation of actin dynamics[J]. Nat Rev Mol Cell Biol,2022,23(12):836-852. doi:10.1038/s41580-022-00508-4 .
|
45 |
黄润业,亓兰达,陈国参,等. 免疫抑制剂霉酚酸的研究及产业化进展[J].微生物学报,2021,61(10):3010-3025. doi:10.13343/j.cnki.wsxb.20200786 .
|
|
HUANG R Y, QI L D, CHEN G C, et al. Research and industrialization progress of immunosuppressant mycophenolic acid[J]. Weishengwu Xuebao,2021,61(10):3010-3025.
|
46 |
ZHOU J, DONG S, WANG P, et al. Identification of nine mRNA signatures for sepsis using random forest[J]. Comput Math Methods Med,2022,2022:5650024. doi:10.1155/2022/5650024 .
|
47 |
ECKENSTALER R, HAUKE M, BENNDORF R A. A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology[J]. Biochem Pharmacol,2022,206:115321. doi:10.1016/j.bcp.2022.115321 .
|
48 |
CAI A, LI L, ZHOU Y. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system[J]. J Hypertens,2016,34(1):3-10. doi:10 .
|
|
1097/HJH.0000000000000768.
|
49 |
BROS M, HAAS K, MOLL L, et al. RhoA as a key regulator of innate and adaptive immunity[J]. Cells,2019,8(7):733. doi:10.3390/cells8070733 .
|
50 |
SHATTIL S J, KIM C, GINSBERG M H. The final steps of integrin activation: The end game[J]. Nat Rev Mol Cell Biol,2010,11(4):288-300. doi:10.1038/nrm2871 .
|
51 |
OKSALA N, PÄRSSINEN J, SEPPÄLÄ I, et al. Kindlin 3 (FERMT3) is associated with unstable atherosclerotic plaques, anti-inflammatory type Ⅱ ma-crophages and upregulation of beta-2 integrins in all major arterial beds[J]. Atherosclerosis,2015,242(1):145-154. doi:10.1016/j.atherosclerosis.2015.06.058 .
|
52 |
LI H, WANG Y, RONG S K, et al. Integrin α1 promotes tumorigenicity and progressive capacity of colorectal cancer[J]. Int J Biol Sci,2020,16(5):815-826. doi:10.7150/ijbs.37275 .
|