法医学杂志 ›› 2023, Vol. 39 ›› Issue (4): 399-405.DOI: 10.12116/j.issn.1004-5619.2022.420606

• 综述 • 上一篇    下一篇

微生物群落演替在死亡时间推断中的研究进展

向青青1(), 陈立方1,2, 苏秦3,4, 杜宇坤5, 梁沛妍3, 康晓东3, 石河3, 徐曲毅3, 赵建3,4, 刘超3,5(), 陈晓晖3()   

  1. 1.昆明医科大学法医学院,云南 昆明 650500
    2.云南省公安厅刑事科学技术研究所,云南 昆明 650228
    3.广州市刑事科学技术研究所 法医病理学公安部重点实验室,广东 广州 510442
    4.中山大学中山医学院法医学系,广东 广州 510080
    5.南方医科大学法医学院,广东 广州 510515
  • 收稿日期:2022-06-16 发布日期:2023-10-10 出版日期:2023-08-25
  • 通讯作者: 刘超,陈晓晖
  • 作者简介:陈晓晖,男,硕士,警务技术副高级任职资格,主要从事法医遗传学检验研究;E-mail:2800947@qq.com
    刘超,男,博士,主任法医师,主要从事个体识别及死因鉴定;E-mail:liuchaogzf@163.com
    向青青(1996—),女,硕士研究生,主要从事法医病理学研究;E-mail:2091585943@qq.com
  • 基金资助:
    国家自然科学基金资助项目(82371901);广州市科技计划资助项目(2019030001);公安部科技强警基础工作专项(2020GABJC38)

Research Progress on Microbial Community Succession in the Postmortem Interval Estimation

Qing-qing XIANG1(), Li-fang CHEN1,2, Qin SU3,4, Yu-kun DU5, Pei-yan LIANG3, Xiao-dong KANG3, He SHI3, Qu-yi XU3, Jian ZHAO3,4, Chao LIU3,5(), Xiao-hui CHEN3()   

  1. 1.College of Forensic Medicine, Kunming Medical University, Kunming 650500, China
    2.Institute of Criminal Science and Technology, Yunnan Provincial Public Security Department, Kunming 650228, China
    3.Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou Forensic Science Institute, Guangzhou 510442, China
    4.Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
    5.School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
  • Received:2022-06-16 Online:2023-10-10 Published:2023-08-25
  • Contact: Chao LIU,Xiao-hui CHEN

摘要:

死亡时间推断是法医学实践中的重点和难点,国内外法医学者一直在探寻客观、可量化和准确的死亡时间推断方法。随着高通量测序技术和人工智能技术的发展与结合,根据死后尸体相关的微生物群落演替规律建立死亡时间推断模型,成为法医学领域的研究热点。本文就利用高通量测序技术探究微生物群落在死亡时间推断中的技术方法、研究应用及影响因素等方面进行综述,为利用微生物群落推断死亡时间的相关研究提供参考。

关键词: 法医病理学, 微生物组学, 死亡时间推断, 微生物群落, 高通量测序, 机器学习, 综述

Abstract:

The postmortem interval (PMI) estimation is a key and difficult point in the practice of forensic medicine, and forensic scientists at home and abroad have been searching for objective, quantifiable and accurate methods of PMI estimation. With the development and combination of high-throughput sequencing technology and artificial intelligence technology, the establishment of PMI model based on the succession of the microbial community on corpses has become a research focus in the field of forensic medicine. This paper reviews the technical methods, research applications and influencing factors of microbial community in PMI estimation explored by using high-throughput sequencing technology, to provide a reference for the related research on the use of microbial community to estimate PMI.

Key words: forensic pathology, microbiomics, postmortem interval estimation, microbial community, high-throughput sequencing, machine learning, review

中图分类号: