法医学杂志 ›› 2023, Vol. 39 ›› Issue (5): 493-500.DOI: 10.12116/j.issn.1004-5619.2022.120104
收稿日期:
2022-01-29
发布日期:
2023-11-24
出版日期:
2023-10-25
通讯作者:
蔡伟雄
作者简介:
蔡伟雄,男,博士,主任法医师,硕士研究生导师,主要从事法医精神病学鉴定与研究;E-mail:tsaise@163.com基金资助:
Wen LI(), Hao-zhe LI, Chen CHEN, Wei-xiong CAI()
Received:
2022-01-29
Online:
2023-11-24
Published:
2023-10-25
Contact:
Wei-xiong CAI
摘要:
面部微表情分析相关研究已经有数十年的发展历史,微表情能够反映个体的真实情绪,在精神障碍的辅助诊断、病情监测方面有重要应用价值。近年来,人工智能和大数据技术的发展使得微表情自动化识别成为可能,这将使得微表情分析更加便捷、应用范围更加广泛。本文回顾了面部微表情分析技术的发展和其在法医精神病学领域的应用现况,以展望该技术的应用前景和发展方向。
中图分类号:
李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500.
Wen LI, Hao-zhe LI, Chen CHEN, Wei-xiong CAI. Research Progress and Application Prospect of Facial Micro-Expression Analysis in Forensic Psychiatry[J]. Journal of Forensic Medicine, 2023, 39(5): 493-500.
1 | YAN W J, WU Q, LIANG J, et al. How fast are the leaked facial expressions: The duration of micro-expressions[J]. J Nonverbal Behav,2013,37(4):217-230. doi:10.1007/s10919-013-0159-8 . |
2 | EKMAN P. Darwin, deception, and facial expression[J]. Ann N Y Acad Sci,2003,1000:205-221. doi:10.1196/annals.1280.010 . |
3 | HAYNIE D L, LAMB M E. Positive and negative facial expressiveness in 7-,10-, and 13-month-old infants[J]. Infant Behav Dev,1995,18(2):257-259. doi:10.1016/0163-6383(95)90055-1 . |
4 | FRANK M G, SVETIEVA E. Microexpressions and deception[M]//Understanding facial expressions in communication. New Delhi: Springer India,2014:227-242. doi:10.1007/978-81-322-1934-7_11 . |
5 | GROSS J J. Emotion regulation: Affective, cognitive, and social consequences[J]. Psychophysiology,2002,39(3):281-291. doi:10.1017/s00485772013 93198 . |
6 | 王甦菁,邹博超,刘瑞,等. 隐藏情绪分析与识别方法[J].心理科学进展,2020,28(9):1426-1436. |
WANG S J, ZOU B C, LIU R, et al. Concealed emotion analysis and recognition method[J]. Xinlikexue Jinzhan,2020,28(9):1426-1436. | |
7 | HAGGARD E A, ISAACS K S. Micromomentary facial expressions as indicators of ego mechanisms in psychotherapy[J]. Meth Res Psychother,1966:154-165. doi:10.1007/978-1-4684-6045-2_14 . |
8 | EKMAN P, FRIESEN W V. Nonverbal leakage and clues to deception[J]. Psychiatry,1969,32(1):88-106. doi:10.1080/00332747.1969.11023575 . |
9 | 张雨铭. 微表情分析技术在侦查讯问中的应用研究[J].河南警察学院学报,2021,30(4):123-128. doi:10.16231/j.cnki.jhpc.2021.04.014 . |
ZHANG Y M. Research on the application of micro-expression analysis in investigation and interrogation[J]. Henan Jingcha Xueyuan Xuebao,2021,30(4):123-128. | |
10 | 魏昭质. 非接触式审讯技术在侦查讯问中的应用[J].北京警察学院学报,2021(1):93-98. doi:10.16478/j.cnki.jbjpc.20201123.001 . |
WEI Z Z. The application of the non-contact interrogation technology in interrogation[J]. Beijing Jingcha Xueyuan Xuebao,2021(1):93-98. | |
11 | MATSUMOTO D, HWANG H C. Microexpressions differentiate truths from lies about future malicious intent[J]. Front Psychol,2018,9:2545. doi:10.3389/fpsyg.2018.02545 . |
12 | 汤瑞丽,蔡运荃. 微表情在课堂教学中的识别与运用[J].基础教育研究,2016(15):72-74. doi: 10.3969/j.issn.1002-3275.2016.15.021 . |
TANG R L, CAI Y Q. Recognition and application of microexpressions in classroom teaching[J]. Jichu Jiaoyu Yanjiu,2016(15):72-74. | |
13 | 韩丽,李洋,周子佳,等. 课堂环境中基于面部表情的教学效果分析[J].现代远程教育研究,2017(4):97-103,112. doi:10.3969/j.issn.1009-5195.2017.04.011 . |
HAN L, LI Y, ZHOU Z J, et al. Teaching effect analysis based on the facial expression recognition in classroom[J]. Xiandai Yuancheng Jiaoyu Yanjiu,2017(4):97-103,112. | |
14 | 向莉,薛红,黄岿,等. 基于微表情识别技术的病情预警系统设计[J].电子技术与软件工程,2021(12):122-123. |
XIANG L, XUE H, HUANG K, et al. Design of disease early warning system based on micro-expression recognition technology[J]. Dianzi Jishu Yu Ruanjian Gongcheng,2021(12):122-123. | |
15 | 王心如,司建伟,张思梦,等. 基于视频识别的独居老人突发失能检测算法研究[J].数码设计(上),2020,9(6):52. |
WANG X R, SI J W, ZHANG S M, et al. Research on detection algorithm of sudden disability in elderly people living alone based on video recognition[J]. Shuma Sheji (Volume Ⅰ),2020,9(6):52. | |
16 | COHN J F, KRUEZ T S, MATTHEWS I, et al. Detecting depression from facial actions and vocal prosody[C]//2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops. Amsterdam: IEEE,2009:1-7. doi:10.1109/ACII.2009.5349358 . |
17 | ALVARI G, FURLANELLO C, VENUTI P. Is smiling the key? Machine learning analytics detect subtle patterns in micro-expressions of infants with ASD[J]. J Clin Med,2021,10(8):1776. doi:10. 3390/jcm10081776 . |
18 | FUJIWARA T, MIZUKI R, MIKI T, et al. Association between facial expression and PTSD symptoms among young children exposed to the Great East Japan Earthquake: A pilot study[J]. Front Psychol,2015,6:1534. doi:10.3389/fpsyg.2015.01534 . |
19 | ELLGRING H, GAEBEL W. Facial expression in schizophrenic patients[C]//Past, Present and Future of Psychiatry. Rio De Janiero: World Scientific,1994:435-9. doi:10.1142/9789814440912_0090 . |
20 | EKMAN P, FRIESEN W. What the face reveals: Basic and applied studies of spontaneous expression using the facial action coding system (FACS)[M]. 2nd ed. Palo Alto: Oxford University Press,1978:371-372. |
21 | HWANG H C, MATSUMOTO D. Introduction to measuring emotions in the face[M]//MEISELMAN H L. Emotion measurement. 2nd ed. Sawston: Woodhead Publishing,2021:225-249. doi:10.1016/B978-0-12-821124-3.00008-9 . |
22 | LOTZIN A, HAACK-DEES B, RESCH F, et al. Facial emotional expression in schizophrenia adolescents during verbal interaction with a parent[J]. Eur Arch Psychiatry Clin Neurosci,2013,263(6):529-536. doi:10.1007/s00406-012-0386-8 . |
23 | FRANK M G, HERBASZ M, SINUK K, et al. I see how you feel: Training laypeople and professionals to recognize fleeting emotions; proceedings of the 2005[C]. Annual Meeting of the International Communication, New York:2009. |
24 | CAMPBELL K, CARPENTER K L, HASHEMI J, et al. Computer vision analysis captures atypical attention in toddlers with autism[J]. Autism,2019,23(3):619-628. doi:10.1177/1362361318766247 . |
25 | ALI M R, MYERS T, WAGNER E, et al. Facial expressions can detect Parkinson’s disease: Preliminary evidence from videos collected online[J]. NPJ Digit Med,2021,4:129. doi:10.1038/s41746-021-00502-8 . |
26 | SAPIRO G, HASHEMI J, DAWSON G. Computer vision and behavioral phenotyping: An autism case study[J]. Curr Opin Biomed Eng,2019,9:14-20. doi:10.1016/j.cobme.2018.12.002 . |
27 | OWAYJAN M, KASHOUR A, HADDAD N AL, et al. The design and development of a Lie Detection System using facial micro-expressions[C]//2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA). Beirut: IEEE,2012:33-38. doi:10.1109/ICTEA.2012.6462897 . |
28 | 徐峰,张军平. 人脸微表情识别综述[J].自动化学报,2017,43(3):333-348. doi:10.16383/j.aas.2017.c160398 . |
XU F, ZHANG J P. Facial microexpression recognition: A survey[J]. Zidonghua Xuebao,2017,43(3):333-348. | |
29 | HASHEMI J, DAWSON G, CARPENTER K L H, et al. Computer vision analysis for quantification of autism risk behaviors[J]. IEEE Trans Affect Comput,2021,12(1):215-226. doi:10.1109/TAFFC.2018.286 8196 . |
30 | PFISTER T, LI X B, ZHAO G Y, et al. Recognising spontaneous facial micro-expressions[C]//2011 International Conference on Computer Vision. Barcelona: IEEE,2011:1449-1456. doi:10.1109/ICCV.2011.612 6401 . |
31 | YAN W J, QI W, LIU Y J, et al. CASME database: A dataset of spontaneous micro-expressions collected from neutralized faces[C]//2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai: IEEE,2013:1-7. doi:10.1109/FG.2013.6553799 . |
32 | POLIKOVSKY S, KAMEDA Y, OHTA Y. Facial micro-expressions recognition using high speed camera and 3D-gradient descriptor[C]//3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009). London: IET,2009:1-6. |
33 | SHREVE M, GODAVARTHY S, GOLDGOF D, et al. Macro- and micro-expression spotting in long videos using spatio-temporal strain[C]//2011 IEEE Int Conf Autom Face Gesture Recognit (FG),Santa Barbara: IEEE,2011:51-56. doi:10.1109/FG. 2011.5771451 . |
34 | OTHMANI A, KADOCH D, BENTOUNES K, et al. Towards robust deep neural networks for affect and depression recognition from speech[EB/OL]. (2020-09-18)[2022-01-20]. doi:10.48550/arXiv.1911. 00310 . . |
35 | LIU Z Y, WANG D Y, DING Z J, et al. A novel bimodal fusion-based model for depression recognition[C]//2020 IEEE International Conference on E-health Networking, Application & Services. Shenzhen:IEEE,2020:1-4. doi:10.1109/HEALTH COM49281.2021.9399033 . |
36 | REJAIBI E, KOMATY A, MERIAUDEAU F, et al. MFCC-based recurrent neural network for automatic clinical depression recognition and assessment from speech[J]. Biomed Signal Process Control,2022,71:103107. doi:10.1016/j.bspc.2021.103107 . |
37 | HE L, CHAN J C W, WANG Z M. Automatic depression recognition using CNN with attention mechanism from videos[J]. Neurocomputing,2021,422:165-175. doi:10.1016/j.neucom.2020.10.015 . |
38 | CHEN Q, CHATURVEDI I, JI S X, et al. Sequential fusion of facial appearance and dynamics for depression recognition[J]. Pattern Recognit Lett,2021,150:115-121. doi:10.1016/j.patrec.2021.07.005 . |
39 | XU L J, HOU J J, GAO J. A novel smart depression recognition method using human-computer interaction system[J]. Wirel Commun Mob Comput,2021,2021:5565967. doi:10.1155/2021/5565967 . |
40 | DEN UYL M J, VAN KUILENBURG H. The FaceReader:Online facial expression recognition[C]//IN L P J. J, NOLDUS L P J J, GRIECO F, et al. Proceedings of Measuring Behaviour 2005,5th International Conference on Methods and Techniques in Behavioral Research. Wageningen: Noldus Information Technology,2005:589-590. |
41 | LITTLEWORT G, WHITEHILL J, WU T F, et al. The computer expression recognition toolbox (CERT)[C]//2011 IEEE International Conference on Automatic Face & Gesture Recognition. Santa Barbara: IEEE,2011:298-305. doi:10.1109/FG.2011. 5771414 . |
42 | BALTRUSAITIS T, ZADEH A, LIM Y C, et al. OpenFace 2.0: Facial behavior analysis toolkit[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition. Xi’an: IEEE,2018:59-66. doi:10.1109/FG.2018.00019 . |
43 | ALGHOWINEM S, GOECKE R, WAGNER M, et al. Multimodal depression detection: Fusion analysis of paralinguistic, head pose and eye gaze behaviors[J]. IEEE Trans Affect Comput,2018,9(4):478-490. doi:10.1109/TAFFC.2016.2634527 . |
44 | PAMPOUCHIDOU A, PEDIADITIS M, KAZANT-ZAKI E, et al. Automated facial video-based recognition of depression and anxiety symptom severity: Cross-corpus validation[J]. Mach Vis Appl,2020,31(4):1-19. doi:10.1007/s00138-020-01080-7 . |
45 | WEI H. Elderly depression recognition based on facial micro-expression extraction[J]. Traitement Du Signal,2021,38(4):1123-1130. doi:10.18280/ts.380423 . |
46 | EGGER H L, DAWSON G, HASHEMI J, et al. Automatic emotion and attention analysis of young children at home: A ResearchKit autism feasibility study[J]. NPJ Digit Med,2018,1:20. doi:10.1038/s41746-018-0024-6 . |
47 | FALKENBERG I, BARTELS M, WILD B. Keep smiling! Facial reactions to emotional stimuli and their relationship to emotional contagion in patients with schizophrenia[J]. Eur Arch Psychiatry Clin Neurosci,2008,258(4):245-253. doi:10.1007/s00406-007-0792-5 . |
48 | GAEBEL W, WÖLWER W. Facial expressivity in the course of schizophrenia and depression[J]. Eur Arch Psychiatry Clin Neurosci,2004,254(5):335-342. doi:10.1007/s00406-004-0510-5 . |
49 | TRÉMEAU F, MALASPINA D, DUVAL F, et al. Facial expressiveness in patients with schizophrenia compared to depressed patients and nonpatient comparison subjects[J]. Am J Psychiatry,2005,162(1):92-101. doi:10.1176/appi.ajp.162.1.92 . |
50 | AGHEVLI M A, BLANCHARD J J, HORAN W P. The expression and experience of emotion in schizophrenia: A study of social interactions[J]. Psychiatry Res,2003,119(3):261-270. doi:10.1016/S0165-1781(03)00133-1 . |
51 | 王国强. 《全国精神卫生工作规划(2015—2020年)》解读[EB/OL].(2015-06-18)[2022-01-22]. . |
WANG G Q. Interpretation of National Mental Health Work Plan (2015—2020)[EB/OL].(2015-06-18)[2022-01-22]. . | |
52 | DUPUY M, ABDALLAH M, SWENDSEN J, et al. Real-time cognitive performance and positive symptom expression in schizophrenia[J]. Eur Arch Psychiatry Clin Neurosci,2022,272(3):415-425. doi:10.1007/s00406-021-01296-2 . |
53 | DE MELO W C, GRANGER E, HADID A. Depression detection based on deep distribution learning[C]//2019 IEEE International Conference on Image Processing. Chinese Taipei:IEEE,2019:4544-4548. doi:10.1109/ICIP.2019.8803467 . |
54 | COMER J S. Introduction to the special series: Applying new technologies to extend the scope and accessibility of mental health care[J]. Cogn Behav Pract,2015,22(3):253-257. doi:10.1016/j.cbpra.2015.04.002 . |
55 | FALAGAS M E, VARDAKAS K Z, VERGIDIS P I. Under-diagnosis of common chronic diseases: Prevalence and impact on human health[J]. Int J Clin Pract,2007,61(9):1569-1579. doi:10.1111/j.1742-1241.2007.01423.x . |
56 | FJELLVANG M, GRØNING L, HAUKVIK U K. Imaging violence in schizophrenia: A systematic review and critical discussion of the MRI literature[J]. Front Psychiatry,2018,9:333. doi:10.3389/fpsyt.201 8.00333 . |
57 | WHITING D, FAZEL S. Epidemiology and risk factors for violence in people with mental disorders [M]//CARPINIELLO B, VITA A, MENCACCI C. Violence and mental disorders. Cham: Springer International Publishing,2020:49-62. |
58 | POLDRACK R A, MONAHAN J, IMREY P B, et al. Predicting violent behavior: What can neuroscience add?[J]. Trends Cogn Sci,2018,22(2):111-123. doi:10.1016/j.tics.2017.11.003 . |
59 | WANG K Z, BANI-FATEMI A, ADANTY C, et al. Prediction of physical violence in schizophrenia with machine learning algorithms[J]. Psychiatry Res,2020,289:112960. doi:10.1016/j.psychres.2020.112960 . |
60 | SANSEGUNDO M S, FERRER-CASCALES R, BELLIDO J H, et al. Prediction of violence, suicide behaviors and suicide ideation in a sample of institutionalized offenders with schizophrenia and other psychosis[J]. Front Psychol,2018,9:1385. doi:10.3389/fpsyg.2018.01385 . |
61 | LECLERC M P, REGENBOGEN C, HAMILTON R H, et al. Some neuroanatomical insights to impulsive aggression in schizophrenia[J]. Schizophr Res,2018,201:27-34. doi:10.1016/j.schres.2018.06.016 . |
62 | EKMAN P, DAVIDSON R J, FRIESEN W V. The Duchenne smile: Emotional expression and brain physiology. II[J]. J Pers Soc Psychol,1990,58(2):342-353. doi:10.1037//0022-3514.58.2.330 . |
63 | PORTER S, BRINKE L TEN. Reading between the lies: Identifying concealed and falsified emotions in universal facial expressions[J]. Psychol Sci,2008,19(5):508-514. doi:10.1111/j.1467-9280.2008. 02116.x . |
64 | BURGOON J K. Microexpressions are not the best way to catch a liar[J]. Front Psychol,2018,9:1672. doi:10.3389/fpsyg.2018.01672 . |
65 | 庄东哲. 侦查讯问中的行为科学技术方法[J].中国人民公安大学学报(社会科学版),2014,30(3):95-101. |
ZHUANG D Z. Technological methods of behavioral science in investigation and interrogation[J]. Zhongguo Renmin Gongan Daxue Xuebao (Social sciences edition),2014,30(3):95-101. | |
66 | 王鹏,李雅楠. 人工智能识别微反应技术在侦查讯问中的应用[J].河北公安警察职业学院学报,2021,21(1):13-16. |
WANG P, LI Y N. Application of the technology of microreaction recognition by artificial intelligence in investigation and interrogation[J]. Hebei Gongan Jingcha Zhiye Xueyuan Xuebao,2021,21(1):13-16. | |
67 | OLDERBAK S, HILDEBRANDT A, PINKPANK T, et al. Psychometric challenges and proposed solutions when scoring facial emotion expression codes[J]. Behav Res Methods,2014,46(4):992-1006. doi:10.3758/s13428-013-0421-3 . |
68 | GORDON I, TANAKA J W, PIERCE M, et al. Facial expression production and training[J]. J Vis,2011,11(11):565. doi:10.1167/11.11.565 . |
[1] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[2] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[3] | 曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477. |
[4] | 范飞, 武娟, 邓振华. 听力学客观检测技术在法医临床学中的应用进展[J]. 法医学杂志, 2023, 39(4): 360-366. |
[5] | 向青青, 陈立方, 苏秦, 杜宇坤, 梁沛妍, 康晓东, 石河, 徐曲毅, 赵建, 刘超, 陈晓晖. 微生物群落演替在死亡时间推断中的研究进展[J]. 法医学杂志, 2023, 39(4): 399-405. |
[6] | 曹宇奇, 施妍, 向平, 郭寅龙. 机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进展[J]. 法医学杂志, 2023, 39(4): 406-416. |
[7] | 李燃, 孙宏钰. 法医学亲缘关系鉴定方法和研究热点[J]. 法医学杂志, 2023, 39(3): 231-239. |
[8] | 马晓燕, 孙宏钰, 黎青. 常染色体STR三等位基因型在法医DNA分析中的研究进展[J]. 法医学杂志, 2023, 39(3): 240-246. |
[9] | 陈航, 胡婧, 乔正, 邓虹霄, 吕敏, 刘伟. 法医毒物领域生物基质标准物质的研究进展[J]. 法医学杂志, 2023, 39(2): 176-185. |
[10] | 高红艳, 刘光甫, 吴建, 陈鹏宇. 动物DNA分型及其在法医学中的研究进展[J]. 法医学杂志, 2023, 39(2): 161-167. |
[11] | 程忠平, 刘燕飞, 徐兴敏, 莫耀南. 磁性纳米颗粒在法医学痕量分析中的应用进展[J]. 法医学杂志, 2023, 39(2): 168-175. |
[12] | 郝虹霞, 王亚辉, 周智露, 刘太昂, 陈瑾, 何宇亨, 万雷, 夏文涛. 膝关节MRI活体年龄推断研究进展[J]. 法医学杂志, 2023, 39(1): 66-71. |
[13] | 王紫薇, 徐倩南, 李成涛, 刘希玲. DNA甲基化年龄推断及其在法医学中的应用展望[J]. 法医学杂志, 2023, 39(1): 72-82. |
[14] | 吴慧, 刘芳芳, 伍俊达, 谢英. 基于眼组织结构的死亡时间推断研究进展[J]. 法医学杂志, 2023, 39(1): 50-56. |
[15] | 吴天璞, 马剑龙, 廖信彪, 张东川, 马开军, 余彦耿, 陈龙. 肺组织缺氧时分子变化与机械性窒息死亡死因鉴定研究进展[J]. 法医学杂志, 2023, 39(1): 57-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||