1 |
朱波峰,孟昊天,兰琼. 我国人体表征分子鉴识研究的成果、挑战与展望[J].法医学杂志,2019,35(5):507-511. doi:10.12116/j.issn.1004-5619.2019.05.001 .
|
|
ZHU B F, MENG H T, LAN Q. Achievements, challenges and prospects of molecular forensic research on human body representation in China[J]. Fayixue Zazhi,2019,35(5):507-511.
|
2 |
VISSCHER P M, MEDLAND S E, FERREIRA M A, et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings[J]. PLoS Genet,2006,2(3):e41. doi:10.1371/journal.pgen.0020041 .
|
3 |
TAMMEN S A, FRISO S, CHOI S W. Epigenetics: The link between nature and nurture[J]. Mol Aspects Med,2013,34(4):753-764. doi:10. 1016/j.mam.2012.07.018 .
|
4 |
WOOD A R, ESKO T, YANG J, et al. Defining the role of common variation in the genomic and biological architecture of adult human height[J]. Nat Genet,2014,46(11):1173-1186. doi:10.1038/ng.3097 .
|
5 |
YENGO L, SIDORENKO J, KEMPER K E, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry[J]. Hum Mol Genet,2018,27(20):3641-3649. doi:10.1093/hmg/ddy271 .
|
6 |
CHEN M H, SIDORE C, AKIYAMA M, et al. Evidence of polygenic adaptation in Sardinia at height-associated loci ascertained from the biobank Japan[J]. Am J Hum Genet,2020,107(1):60-71. doi:10.1016/j.ajhg.2020.05.014 .
|
7 |
CHEN M, CHIANG C W K. Allele frequency differentiation at height-associated SNPs among continental human populations[J]. Eur J Hum Genet,2021,29(10):1542-1548. doi:10.1038/s41431-021-00938-2 .
|
8 |
ROBINSON M R, HEMANI G, MEDINA-GOMEZ C, et al. Population genetic differentiation of height and body mass index across Europe[J]. Nat Genet,2015,47(11):1357-1362. doi:10.1038/ng.3401 .
|
9 |
MAROULI E, GRAFF M, MEDINA-GOMEZ C, et al. Rare and low-frequency coding variants alter human adult height[J]. Nature,2017,542(7640):186-190. doi:10.1038/nature21039 .
|
10 |
AKIYAMA M, ISHIGAKI K, SAKAUE S, et al. Characterizing rare and low-frequency height-associated variants in the Japanese population[J]. Nat Commun,2019,10(1):4393. doi:10.1038/s41467-019-12276-5 .
|
11 |
BENONISDOTTIR S, ODDSSON A, HELGA-SON A, et al. Epigenetic and genetic components of height regulation[J]. Nat Commun,2016,7:13490. doi:10.1038/ncomms13490 .
|
12 |
LIN E, TSAI S J, KUO P H, et al. Genome-wide association study in the Taiwan Biobank identifies four novel genes for human height: NABP2, RASA2, RNF41 and SLC39A5 [J]. Hum Mol Genet,2021,30(23):2362-2369. doi:10.1093/hmg/ddab202 .
|
13 |
HE M, XU M, ZHANG B, et al. Meta-analysis of genome-wide association studies of adult height in East Asians identifies 17 novel loci[J]. Hum Mol Genet,2015,24(6):1791-1800. doi:10.1093/hmg/ddu583 .
|
14 |
GRAFF M, JUSTICE A E, YOUNG K L, et al. Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry[J]. Am J Hum Genet,2021,108(4):564-582. doi:10.1016/j.ajhg.2021.02.011 .
|
15 |
CHO H W, JIN H S, EOM Y B. A genome-wide association study of novel genetic variants associated with anthropometric traits in koreans[J]. Front Genet,2021,12:669215. doi:10.3389/fgene.2021.669215 .
|
16 |
WOJCIK G L, GRAFF M, NISHIMURA K K, et al. Genetic analyses of diverse populations improves discovery for complex traits[J]. Nature,2019,570(7762):514-518. doi:10.1038/s41586-019-1310-4 .
|
17 |
YENGO L, VEDANTAM S, MAROULI E, et al. A saturated map of common genetic variants associated with human height[J]. Nature,2022,610(7933):704-712. doi:10.1038/s41586-022-05275-y .
|
18 |
TACHMAZIDOU I, SÜVEGES D, MIN J L, et al. Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits[J]. Am J Hum Genet,2017,100(6):865-884. doi:10.1016/j.ajhg.2017.04.014 .
|
19 |
LIU S Y, HUANG S J, CHEN F, et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history[J]. Cell,2018,175(2):347-359.e14. doi:10.1016/j.cell.2018.08.016 .
|
20 |
HELLENTHAL G, BUSBY G B J, BAND G, et al. A genetic atlas of human admixture history[J]. Science,2014,343(6172):747-751. doi:10.1126/scie nce.1243518 .
|
21 |
PETER B M, PETKOVA D, NOVEMBRE J. Genetic landscapes reveal how human genetic diversity aligns with geography[J]. Mol Biol Evol,2019,37(4):943-951. doi:10.1093/molbev/msz280 .
|
22 |
MARTIN A R, KANAI M, KAMATANI Y, et al. Clinical use of current polygenic risk scores may exacerbate health disparities[J]. Nat Genet,2019,51(4):584-591. doi:10.1038/s41588-019-0379-x .
|
23 |
WANG Y, GUO J, NI G, et al. Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations[J]. Nat Commun,2020,11(1):3865. doi:10.1038/s41467-020-17719-y .
|
24 |
GUO J, BAKSHI A, WANG Y, et al. Quantifying genetic heterogeneity between continental populations for human height and body mass index[J]. Sci Rep,2021,11(1):5240. doi:10.1038/s41598-021-84739-z .
|
25 |
WU Y, ZHENG Z, VISSCHER P M, et al. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data[J]. Genome Biol,2017,18(1):86. doi:10.1186/s13059-017-1216-0 .
|
26 |
MACÉ A, TUKE M A, DEELEN P, et al. CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits[J]. Nat Commun,2017,8(1):744. doi:10.1038/s41467-017-00556-x .
|
27 |
MUKAMEL R E, HANDSAKER R E, SHERMAN M A, et al. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes[J]. Science,2021,373(6562):1499-1505. doi:10.1126/science.abg8289 .
|
28 |
BEYTER D, INGIMUNDARDOTTIR H, ODD-SSON A, et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits[J]. Nat Genet,2021,53(6):779-786. doi:10.1038/s41588-021-00865-4 .
|
29 |
MIN J L, HEMANI G, HANNON E, et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation[J]. Nat Genet,2021,53(9):1311-1321. doi:10.1038/s41588-021-00923-x .
|
30 |
RELTON C L, GROOM A, POURCAIN B ST, et al. DNA methylation patterns in cord blood DNA and body size in childhood[J]. PLoS One,2012,7(3):e31821. doi:10.1371/journal.pone.0031821 .
|
31 |
SIMEONE P, ALBERTI S. Epigenetic heredity of human height[J]. Physiol Rep,2014,2(6):e12047. doi:10.14814/phy2.12047 .
|
32 |
OUNI M, BELOT M P, CASTELL A L, et al. The P2 promoter of the IGF1 gene is a major epigenetic locus for GH responsiveness[J]. Pharmacogenomics J,2016,16(1):102-106. doi:10.1038/tpj. 2015.26 .
|
33 |
OUNI M, GUNES Y, BELOT M P, et al. The IGF1 P2 promoter is an epigenetic QTL for circulating IGF1 and human growth[J]. Clin Epigenetics,2015,7:22. doi:10.1186/s13148-015-0062-8 .
|
34 |
OUNI M, CASTELL A L, ROTHENBUHLER A, et al. Higher methylation of the IGF1 P2 promoter is associated with idiopathic short stature[J]. Clin Endocrinol (Oxf),2016,84(2):216-221. doi:10.1111/ cen.12867 .
|
35 |
MUURINEN M, HANNULA-JOUPPI K, REINIUS L E, et al. Hypomethylation of HOXA4 promoter is common in Silver-Russell syndrome and growth restriction and associates with stature in healthy children[J]. Sci Rep,2017,7(1):15693. doi:10.1038/s41598-017-16070-5 .
|
36 |
TATTON-BROWN K, SEAL S, RUARK E, et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability[J]. Nat Genet,2014,46(4):385-388. doi:10.1038/ng.2917 .
|
37 |
TATTON-BROWN K, LOVEDAY C, YOST S, et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability[J]. Am J Hum Genet,2017,100(5):725-736. doi:10.1016/j.ajhg.2017.03.010 .
|
38 |
JURKOWSKA R Z, JURKOWSKI T P, JELTSCH A. Structure and function of mammalian DNA methyltransferases[J]. Chembiochem,2011,12(2):206-222. doi:10.1002/cbic.201000195 .
|
39 |
GRAFODATSKAYA D, CHUNG B H, BUTCHER D T, et al. Multilocus loss of DNA methylation in individuals with mutations in the histone H3 lysine 4 demethylase KDM5C[J]. BMC Med Genomics,2013,6:1. doi:10.1186/1755-8794-6-1 .
|
40 |
UCHIYAMA R, KUPKOVA K, SHETTY S J, et al. Histone H3 lysine 4 methylation signature associated with human undernutrition[J]. PNAS,2018,115(48):E11264-E11273. doi:10.1073/pnas.1722125115 .
|
41 |
TATTON-BROWN K, HANKS S, RUARK E, et al. Germline mutations in the oncogene EZH2 cause Weaver syndrome and increased human height[J]. Oncotarget,2011,2(12):1127-1133. doi:10.18632/oncotarget.385 .
|
42 |
LUI J C, GARRISON P, NGUYEN Q, et al. EZH1 and EZH2 promote skeletal growth by repressing inhibitors of chondrocyte proliferation and hypertrophy[J]. Nat Commun,2016,7:13685. doi:10.1038/ncomms13685 .
|
43 |
COHEN A S, YAP D B, LEWIS M E, et al. Weaver syndrome-associated EZH2 protein variants show impaired histone methyltransferase function in vitro [J]. Hum Mutat,2016,37(3):301-307. doi:10.1002/humu.22946 .
|
44 |
CAO R, ZHANG Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3[J]. Curr Opin Genet Dev,2004,14(2):155-164. doi:10.1016/j.gde.2004.02.001 .
|
45 |
VIRÉ E, BRENNER C, DEPLUS R, et al. The polycomb group protein EZH2 directly controls DNA methylation[J]. Nature,2006,439(7078):871-874. doi:10.1038/nature04431 .
|
46 |
PARÉ G, MAO S, DENG W Q. A machine-learning heuristic to improve gene score prediction of polygenic traits[J]. Sci Rep,2017,7(1):12665. doi:10.1038/s41598-017-13056-1 .
|
47 |
LLOYD-JONES L R, ZENG J, SIDORENKO J, et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics[J]. Nat Commun,2019,10(1):5086. doi:10.1038/s41467-019- 12653-0 .
|
48 |
LELLO L, AVERY S G, TELLIER L, et al. Accurate genomic prediction of human height[J]. Genetics,2018,210(2):477-497. doi:10.1534/genetics. 118.301267 .
|