法医学杂志 ›› 2023, Vol. 39 ›› Issue (4): 406-416.DOI: 10.12116/j.issn.1004-5619.2022.320402
收稿日期:
2022-04-15
发布日期:
2023-10-10
出版日期:
2023-08-25
通讯作者:
向平,郭寅龙
作者简介:
郭寅龙,男,研究员,主要从事质谱研究;E-mail:ylguo@sioc.ac.cn基金资助:
Yu-qi CAO1(), Yan SHI2, Ping XIANG2(), Yin-long GUO1()
Received:
2022-04-15
Online:
2023-10-10
Published:
2023-08-25
Contact:
Ping XIANG,Yin-long GUO
摘要:
近年来,芬太尼类物质的种类和数量快速增长,如何对新型芬太尼类物质进行快速鉴别以缩短监管空窗期是当前禁毒工作的热点。目前已开发的芬太尼类物质识别鉴定方法多依赖标准物质,靶向分析特定已知化学结构的芬太尼类物质或其代谢物,而对于结构未知的新型化合物则束手无策。近年来兴起的机器学习技术能够快速地从海量数据中自动提取有价值的特征规律,为芬太尼类物质的非靶向筛查研究提供新的思路。例如拉曼光谱、核磁共振波谱、高分辨质谱等仪器的广泛应用能够最大程度地挖掘样品中与芬太尼类物质相关的特征数据,将这些数据辅以合适的机器学习模型,将创建多种高性能的非靶向芬太尼类物质识别鉴定方法。本文对近年来开发的机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进行总结回顾,并展望该领域未来的发展趋势。
中图分类号:
曹宇奇, 施妍, 向平, 郭寅龙. 机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进展[J]. 法医学杂志, 2023, 39(4): 406-416.
Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs[J]. Journal of Forensic Medicine, 2023, 39(4): 406-416.
1 | STANLEY T H. The history and development of the fentanyl series[J]. J Pain Symptom Manag,1992,7(S3):S3-S7. doi:10.1016/0885-3924(92)90047-l . |
2 | KUCZYŃSKA K, GRZONKOWSKI P, KACPRZAK Ł, et al. Abuse of fentanyl: An emerging problem to face[J]. Forensic Sci Int,2018,289:207-214. doi:10.1016/j.forsciint.2018.05.042 . |
3 | O’DONNELL J, GLADDEN R M, GOLDBERGER B A, et al. Notes from the field: Opioid-involved overdose deaths with fentanyl or fentanyl analogs detected - 28 states and the district of Columbia, July 2016 - december 2018[J]. MMWR Morb Mortal Wkly Rep,2020,69(10):271-273. doi:10.15585/mmwr.mm6910a4 . |
4 | ROTHBERG R L, STITH K. Fentanyl: A whole new world?[J]. J Law Med Ethics,2018,46(2):314-324. doi:10.1177/1073110518782937 . |
5 | ARMENIAN P, VO K T, BARR-WALKER J, et al. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review[J]. Neuropharmacology,2018,134(Pt A):121-132. doi:10.1016/j.neu ropharm.2017.10.016 . |
6 | GILBERT N, MEWIS R E, SUTCLIFFE O B. Fast & fluorinated - Development and validation of a rapid benchtop NMR approach and other routine screening methods for the detection and quantification of synthesized fluorofentanyl derivatives[J]. Forensic Chem,2021,23(7):100321. doi:10.1016/j.forc.2021.100321 . |
7 | SMITH B C. Fundamentals of Fourier transform infrared spectroscopy[M]. Boca Raton, Florida: CRC Press,2011:1-2. |
8 | STEIN S E, SCOTT D R. Optimization and testing of mass spectral library search algorithms for compound identification[J]. J Am Soc Mass Spectrom,1994,5(9):859-866. doi:10.1016/1044-0305(94)87009-8 . |
9 | REITZEL L A, DALSGAARD P W, MÜLLER I B, et al. Identification of ten new designer drugs by GC-MS, UPLC-QTOF-MS, and NMR as part of a police investigation of a Danish internet company[J]. Drug Test Anal,2012,4(5):342-354. doi:10 . |
1002/dta.358. | |
10 | JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science,2015,349(6245):255-260. doi:10.1126/science.aaa8415 . |
11 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM,2017,60(6):84-90. doi:10.1145/3065386 . |
12 | ZHANG L, VICENTE GONÇALVES C M, DAI L, et al. Exploring metabolic syndrome serum profiling based on gas chromatography mass spectrome-try and random forest models[J]. Anal Chim Acta,2014,827:22-27. doi:10.1016/j.aca.2014.04.008 . |
13 | LIEBAL U W, PHAN A N T, SUDHAKAR M, et al. Machine learning applications for mass spectrome-try-based metabolomics[J]. Metabolites,2020,10(6):243. doi:10.3390/metabo10060243 . |
14 | ZHOU Z P, ZARE R N. Personal information from latent fingerprints using desorption electrospray ioni-zation mass spectrometry and machine learning[J]. Anal Chem,2017,89(2):1369-1372. doi:10.1021/acs. analchem.6b04498 . |
15 | KASPERKIEWICZ A, PAWLISZYN J. Multiresidue pesticide quantitation in multiple fruit matrices via automated coated blade spray and liquid chromato-graphy coupled to triple quadrupole mass spectrome-try[J]. Food Chem,2021,339:127815. doi:10.1016/j.foodchem.2020.127815 . |
16 | ALLEN D R, MCWHINNEY B C. Quadrupole time-of-flight mass spectrometry: A paradigm shift in toxicology screening applications[J]. Clin Biochem Rev,2019,40(3):135-146. doi:10.33176/AACB-19-00023 . |
17 | HE Z, WANG Y, XU Y, et al. Determination of antibiotics in vegetables using QuEChERS-based method and liquid chromatography-quadrupole linear ion trap mass spectrometry[J]. Food Anal Methods,2018,11(10):2857-2864. doi:10.1007/s12161-018-1252-8 . |
18 | BROWN H M, MCDANIEL T J, FEDICK P W, et al. The current role of mass spectrometry in forensics and future prospects[J]. Anal Methods,2020,12(32):3974-3997. doi:10.1039/d0ay01113d . |
19 | CHIU H H, KUO C H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples[J]. J Food Drug Anal,2020,28(1):60-73. doi:10.1016/j.jfda.2019.10.003 . |
20 | MALACA S, BUSARDÒ F P, GOTTARDI M, et al. Dilute and shoot ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis of psychoactive drugs in oral fluid[J]. J Pharm Biomed Anal,2019,170:63-67. doi:10.1016/ |
j.jpba.2019.02.039. | |
21 | ZHANG F, GE W, RUAN G, et al. Data-indepen-dent acquisition mass spectrometry-based proteomics and software tools: A glimpse in 2020[J]. Proteomics,2020,20(17/18):e1900276. doi:10.1002/pmic.201900276 . |
22 | HELANDER A, BÄCKBERG M, SIGNELL P, et al. Intoxications involving acrylfentanyl and other novel designer fentanyls - results from the Swedish STRIDA project[J]. Clin Toxicol (Phila),2017,55(6):589-599. doi:10.1080/15563650.2017.1303141 . |
23 | MOORTHY A S, KEARSLEY A J, MALLARD W G, et al. Mass spectral similarity mapping applied to fentanyl analogs[J]. Forensic Chem,2020,19:100237. doi:10.1016/j.forc.2020.100237 . |
24 | QIN N, WU H, XIANG P, et al. Investigation of fragmentation pathways of fentanyl analogues and novel synthetic opioids by electron ionization high-resolution mass spectrometry and electrospray ioni-zation high-resolution tandem mass spectrometry[J]. J Am Soc Mass Spectrom,2020,31(2):277-291. doi:10.1021/jasms.9b00112 . |
25 | USAMA M, QADIR J, RAZA A, et al. Unsupervised machine learning for networking: Techniques, applications and research challenges[J]. IEEE Access,2019,7:65579-65615. doi:10.1109/ACCESS.2019.2916648 . |
26 | MAULUD D, ABDULAZEEZ A M. A review on linear regression comprehensive in machine learning[J]. J Appl Sci Technol Trends,2020,1(4):140-147. doi:10.38094/jastt1457 . |
27 | MENARD S. Six approaches to calculating standardized logistic regression coefficients[J]. Am Stat,2004,58(3):218-223. doi:10.1198/000313004X946 . |
28 | FLORESTA G, RESCIFINA A, ABBATE V. Structure-based approach for the prediction of mu-opioid binding affinity of unclassified designer fentanyl-like mole-cules[J]. Int J Mol Sci,2019,20(9):2311. doi:10.3390/ijms20092311 . |
29 | FLACH P A, LACHICHE N. Naive Bayesian classification of structured data[J]. Mach Learn,2004,57(3):233-269. doi:10.1023/B:MACH.0000039778 . |
69032.ab. | |
30 | KLINGBERG J, CAWLEY A, SHIMMON R, et al. Towards compound identification of synthetic opioids in nontargeted screening using machine learning techniques[J]. Drug Test Anal,2021,13(5):990-1000. doi:10.1002/dta.2976 . |
31 | O’SHEA K, NASH R. An introduction to convolutional neural networks[J/OL]. arXiv:1511.08458. 2015- |
12-02[2022-02-15]. . | |
32 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Commun ACM,2020,63(11):139-144. doi:10.1145/3422622 . |
33 | GARG S, TAYLOR J, SHERIEF M EL, et al. Detecting risk level in individuals misusing fentanyl utilizing posts from an online community on Reddit[J]. Internet Interv,2021,26:100467. doi:10 . |
1016/j.invent.2021.100467. | |
34 | VAN GESTEL T, SUYKENS J A K, BAESENS B, et al. Benchmarking least squares support vector machine classifiers[J]. Mach Learn,2004,54(1):5-32. doi:10.1023/B:MACH.0000008082.80494.e0 . |
35 | DONG N, LU W C, CHEN N Y, et al. Using support vector classification for SAR of fentanyl derivatives[J]. Acta Pharmacol Sin,2005,26(1):107-112. doi:10.1111/j.1745-7254.2005.00014.x . |
36 | ABDI H, WILLIAMS L J. Principal component analysis[J]. WIREs Comput Stat,2010,2(4):433-459. doi:10.1002/wics.101 . |
37 | MCKEOWN H E, ROOK T J, PEARSON J R, et al. Classification of fentanyl precursors by multivariate analysis of low-field nuclear magnetic resonance spectroscopy data[J]. Forensic Chem,2020,21:100285. doi:10.1016/j.forc.2020.100285 . |
38 | GILBERT N, MEWIS R E, SUTCLIFFE O B. Classification of fentanyl analogues through principal component analysis (PCA) and hierarchical clustering of GC-MS data[J]. Forensic Chem,2020,21:100287. doi:10.1016/j.forc.2020.100287 . |
39 | 薛康,何嘉玲,吴雪梅,等. 超高效液相色谱-串联质谱法测定毛发中5种芬太尼类新精神活性物质的方法研究与应用[J].质量安全与检验检测,2022,32(2):9-12. |
XUE K, HE J L, WU X M, et al. Establishment and application of UPLC-MS/MS method for 5 fentanyl-analogs of new psychoactive substance in human hair[J]. Zhiliang Anquan Yu Jianyan Jiance,2022,32(2):9-12. | |
40 | 董振霖,杨春光,徐天,等. 液相色谱-四极杆/飞行时间质谱法分析29种芬太尼类物质及其碎裂机理[J].色谱,2022,40(1):28-40. doi:10.3724/SP.J.1123.2021.01036 . |
DONG Z L, YANG C G, XU T, et al. Analysis of 29 fentanyl analogs and their fragmentation mechanism by liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Sepu,2022,40(1):28-40. | |
41 | 郑天,周亚红,黄志伟,等. 应用超高效液相色谱串联三重四极杆飞行时间质谱对多种新型毒品的定量定性测定[J].分析化学进展,2019,9(2):95-106. doi:10.12677/aac.2019.92013 . |
ZHENG T, ZHOU Y H, HUANG Z W, et al. Qualitative and quantitative analysis of various new psychoactive substances by UPLC-QTOF-MS/MS[J].Fenxi Huaxue Jinzhan,2019,9(2):95-106. | |
42 | BERAN J A, KEVAN L. Molecular electron ionization cross sections at 70 eV[J]. J Phys Chem,1969,73(11):3866-3876. doi:10.1021/j100845a050 . |
43 | KOSHUTE P, HAGAN N, JAMESON N J. Machine learning model for detecting fentanyl analogs from mass spectra[J]. Forensic Chem,2022,27:100379. doi:10.1016/j.forc.2021.100379 . |
44 | BUJA A, SWAYNE D F, LITTMAN M L, et al. Data visualization with multidimensional scaling[J]. J Comput Graph Stat,2008,17(2):444-472. doi:10.1198/106186008X318440 . |
45 | VALDEZ C A, LEIF R N, MAYER B P. An efficient, optimized synthesis of fentanyl and related analogs[J]. PLoS One,2014,9(9):e108250. doi:10.1371/ journal.pone.0108250 . |
46 | MUSTAZZA C, BORIONI A, SESTILI I, et al. Synthesis and evaluation as NOP ligands of some spiro[piperidine-4,2’(1’H)-quinazolin]-4’(3’H)-ones and spiro[piperidine-4,5’(6’H)-[1,2,4]triazolo[1,5-c]quinazolines[J]. Chem Pharm Bull (Tokyo),2006,54(5):611-622. doi:10.1248/cpb.54.611 . |
47 | GRISHINA G V, POTAPOV V M, ABDULGA-NEEVA S A, et al. Steric control of the asymmetric synthesis of N-substitued 2-methyl-4-piperidones[J]. Chem Heterocycl Compd,1985,21(12):1355-1362. doi:10.1007/BF00842959 . |
48 | MAYER B P, DEHOPE A J, MEW D A, et al. Chemical attribution of fentanyl using multivariate statistical analysis of orthogonal mass spectral data[J]. Anal Chem,2016,88(8):4303-4310. doi:10.1021/acs. analchem.5b04434 . |
49 | MÖRÉN L, QVARNSTRÖM J, ENGQVIST M, et al. Attribution of fentanyl analogue synthesis routes by multivariate data analysis of orthogonal mass spectral data[J]. Talanta,2019,203:122-130. doi:10.1016/j.talanta.2019.05.025 . |
50 | SCHULZ H, BARANSKA M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy[J]. Vib Spectrosc,2007,43(1):13-25. doi:10.1016/j.vibspec.2006.06.001 . |
51 | NEUGEBAUER U, RÖSCH P, POPP J. Raman spectroscopy towards clinical application: Drug monitoring and pathogen identification[J]. Int J Antimicrob Agents,2015,46(S1):S35-S39. doi:10.1016/j.ijantimicag.2015.10.014 . |
52 | 董荣录,李绍飞,林东岳,等. 表面增强拉曼光谱在毒品检测中的应用进展[J].中国科学(化学),2021,51(3):294-309. doi:10.1360/SSC-2020-0196 . |
DONG R L, LI S F, LIN D Y, et al. Progress of the applications of surface-enhanced Raman spectroscopy in illicit drug detection[J]. Zhongguo Kexue (Huaxue),2021,51(3):294-309. | |
53 | 赵凌艺,杨瑞琴,蔡伟平. 表面增强拉曼光谱在传统阿片毒品检测中的应用[J].激光与光电子学进展,2022,59(17):27-36. doi:10.3788/LOP202259.1700002 . |
ZHAO L Y, YANG R Q, CAI W P. Application of surface-enhanced Raman spectroscopy in the detection of classical opioids[J]. Jiguang Yu Guangdianzixue Jinzhan,2022,59(17):27-36. | |
54 | DIES H, RAVEENDRAN J, ESCOBEDO C, et al. Rapid identification and quantification of illicit drugs on nanodendritic surface-enhanced Raman scattering substrates[J]. Sensor Actuat B Chem,2018,257:382-388. doi:10.1016/j.snb.2017.10.181 . |
55 | SIVASHANMUGAN K, SQUIRE K, TAN A, et al. Trace detection of tetrahydrocannabinol in body fluid via surface-enhanced Raman scattering and principal component analysis[J]. ACS Sens,2019,4(4):1109-1117. doi:10.1021/acssensors.9b00476 . |
56 | SALEMMILANI R, PIOREK B D, MIRSAFAVI R Y, et al. Dielectrophoretic nanoparticle aggregation for on-demand surface enhanced Raman spectroscopy analysis[J]. Anal Chem,2018,90(13):7930-7936. doi:10.1021/acs.analchem.8b00510 . |
57 | WANG K, XU B, WU J, et al. Elucidating fentanyls differentiation from morphines in chemical and biological samples with surface-enhanced Raman spectroscopy[J]. Electrophoresis,2019,40(16/17):2193-2203. doi:10.1002/elps.201900004 . |
58 | HADDAD A, COMANESCU M A, GREEN O, et al. Detection and quantitation of trace fentanyl in heroin by surface-enhanced Raman spectroscopy[J]. Anal Chem,2018,90(21):12678-12685. doi:10.1021/acs.analchem.8b02909 . |
59 | GOZDZIALSKI L, RAMSAY M, LARNDER A, et al. Fentanyl detection and quantification using portable Raman spectroscopy in community drug checking[J]. J Raman Spectrosc,2021,52(7):1308-1316. doi:10.1002/jrs.6133 . |
60 | MIRSAFAVI R, MOSKOVITS M, MEINHART C. Detection and classification of fentanyl and its precursors by surface-enhanced Raman spectroscopy[J]. Analyst,2020,145(9):3440-3446. doi:10.1039/c9an02568e . |
61 | REICH G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications[J]. Adv Drug Deliv Rev,2005,57(8):1109-1143. doi:10.1016/j.addr.2005.01.020 . |
62 | KRANENBURG R F, VERDUIN J, WEESEPOEL Y, et al. Rapid and robust on-scene detection of cocaine in street samples using a handheld near-infrared spectrometer and machine learning algorithms[J]. Drug Test Anal,2020,12(10):1404-1418. doi:10.1002/dta.2895 . |
63 | LIU C M, HAN Y, MIN S G, et al. Rapid qualitative and quantitative analysis of methamphetamine, ketamine, heroin, and cocaine by near-infrared spectroscopy[J]. Forensic Sci Int,2018,290:162-168. doi:10.1016/j.forsciint.2018.07.008 . |
64 | HESPANHOL M C, PASQUINI C, MALDANER A O. Evaluation of a low-cost portable near-infrared spectrophotometer for in situ cocaine profiling[J]. Talanta,2019,200:553-561. doi:10.1016/j.talanta.2019.03.091 . |
65 | ANTONIDES L H, BRIGNALL R M, COSTELLO A, et al. Rapid identification of novel psychoactive and other controlled substances using low-field 1H NMR spectroscopy[J]. ACS Omega,2019,4(4):7103-7112. doi:10.1021/acsomega.9b00302 . |
66 | DRAPER S L, MCCARNEY E R. Benchtop nuclear magnetic resonance spectroscopy in forensic chemistry[J]. Magn Reson Chem,2023,61(2):106-129. doi:10.1002/mrc.5197 . |
67 | DUFFY J, URBAS A, NIEMITZ M, et al. Differentiation of fentanyl analogues by low-field NMR spectroscopy[J]. Anal Chim Acta,2019,1049:161-169. doi:10.1016/j.aca.2018.12.014 . |
[1] | 李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500. |
[2] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[3] | 安永明, 张志威, 关国鹏. 肺挫裂伤合并多发假性囊肿法医学鉴定1例[J]. 法医学杂志, 2023, 39(5): 519-522. |
[4] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[5] | 马安全, 马晓晨, 方俊杰. 会阴部外伤致睾丸萎缩鉴定1例[J]. 法医学杂志, 2023, 39(5): 528-530. |
[6] | 夏晴, 陈捷敏. 垂直压缩型踝关节骨折成伤机制分析2例[J]. 法医学杂志, 2023, 39(5): 525-527. |
[7] | 曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477. |
[8] | 李强, 付志浩, 孙晓东, 黄效宇. 利用CT扫描测量法判断眼球内陷残疾评定1例[J]. 法医学杂志, 2023, 39(5): 516-518. |
[9] | 朱琨, 高东, 范利华. 腓骨骨纤维结构不良并骨折因果关系鉴定1例[J]. 法医学杂志, 2023, 39(5): 522-524. |
[10] | 林丹丹, 赵莉莉, 施芳芳, 陈雅婷, 潘国南. 二次交通伤致伤方式探讨1例[J]. 法医学杂志, 2023, 39(5): 530-534. |
[11] | 郝虹霞, 陈捷敏, 王荣荣, 俞晓英, 王萌, 周智露, 盛延良, 夏文涛. 虚拟现实-图像视觉诱发电位用于客观评定单眼屈光不正视觉损伤的价值[J]. 法医学杂志, 2023, 39(4): 382-387. |
[12] | 宋爱英, 赵翌博, 杨利君. 液相色谱-串联质谱法检验氟乙酸致死1例[J]. 法医学杂志, 2023, 39(4): 428-430. |
[13] | 张韦屹, 周旻. 岩斜区脑膜瘤切除术后长期昏迷医疗损害鉴定1例[J]. 法医学杂志, 2023, 39(4): 421-423. |
[14] | 白洁, 孙晶, 程晓光, 刘凡, 刘华, 王旭. 基于YOLOv3算法的肋骨骨折诊断模型的构建及应用[J]. 法医学杂志, 2023, 39(4): 343-349. |
[15] | 范飞, 武娟, 邓振华. 听力学客观检测技术在法医临床学中的应用进展[J]. 法医学杂志, 2023, 39(4): 360-366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||