法医学杂志 ›› 2023, Vol. 39 ›› Issue (4): 406-416.DOI: 10.12116/j.issn.1004-5619.2022.320402

• 综述 • 上一篇    下一篇

机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进展

曹宇奇1(), 施妍2, 向平2(), 郭寅龙1()   

  1. 1.中国科学院上海有机化学研究所 金属有机化学国家重点实验室,上海 200032
    2.司法鉴定科学研究院 上海市法医学重点实验室 司法部司法鉴定重点实验室 上海市司法鉴定专业技术服务平台,上海 200063
  • 收稿日期:2022-04-15 发布日期:2023-10-10 出版日期:2023-08-25
  • 通讯作者: 向平,郭寅龙
  • 作者简介:郭寅龙,男,研究员,主要从事质谱研究;E-mail:ylguo@sioc.ac.cn
    向平,女,研究员,主要从事法医毒物学研究;E-mail:xiangping2630@163.com
    曹宇奇(1996—),男,博士研究生,主要从事质谱离子源开发研究;E-mail:Cyq2017@sioc.ac.cn
  • 基金资助:
    国家重点研发计划资助项目(2022YFC3302003);司法部司法鉴定重点实验室资助项目;上海市法医学重点实验室资助项目(21DZ2270800);上海市司法鉴定专业技术服务平台资助项目

Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs

Yu-qi CAO1(), Yan SHI2, Ping XIANG2(), Yin-long GUO1()   

  1. 1.State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    2.Shanghai Key Laboratory of Forensic Medicine, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China
  • Received:2022-04-15 Online:2023-10-10 Published:2023-08-25
  • Contact: Ping XIANG,Yin-long GUO

摘要:

近年来,芬太尼类物质的种类和数量快速增长,如何对新型芬太尼类物质进行快速鉴别以缩短监管空窗期是当前禁毒工作的热点。目前已开发的芬太尼类物质识别鉴定方法多依赖标准物质,靶向分析特定已知化学结构的芬太尼类物质或其代谢物,而对于结构未知的新型化合物则束手无策。近年来兴起的机器学习技术能够快速地从海量数据中自动提取有价值的特征规律,为芬太尼类物质的非靶向筛查研究提供新的思路。例如拉曼光谱、核磁共振波谱、高分辨质谱等仪器的广泛应用能够最大程度地挖掘样品中与芬太尼类物质相关的特征数据,将这些数据辅以合适的机器学习模型,将创建多种高性能的非靶向芬太尼类物质识别鉴定方法。本文对近年来开发的机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进行总结回顾,并展望该领域未来的发展趋势。

关键词: 法医学, 毒物分析, 芬太尼, 机器学习, 非靶向筛查, 综述

Abstract:

In recent years, the types and quantities of fentanyl analogs have increased rapidly. It has become a hotspot in the illicit drug control field of how to quickly identify novel fentanyl analogs and to shorten the blank regulatory period. At present, the identification methods of fentanyl analogs that have been developed mostly rely on reference materials to target fentanyl analogs or their metabolites with known chemical structures, but these methods face challenges when analyzing new compounds with unknown structures. In recent years, emerging machine learning technology can quickly and automatically extract valuable features from massive data, which provides inspiration for the non-targeted screening of fentanyl analogs. For example, the wide application of instruments like Raman spectroscopy, nuclear magnetic resonance spectroscopy, high resolution mass spectrometry, and other instruments can maximize the mining of the characteristic data related to fentanyl analogs in samples. Combining this data with an appropriate machine learning model, researchers may create a variety of high-performance non-targeted fentanyl identification methods. This paper reviews the recent research on the application of machine learning assisted non-targeted screening strategy for the identification of fentanyl analogs, and looks forward to the future development trend in this field.

Key words: forensic medicine, toxicological analysis, fentanyl, machine learning, non-targeted screening, review

中图分类号: