1 |
HAMILTON C, BARNETT L, TROP A, et al. Emergency department management of patients with rib fracture based on a clinical practice guideline[J]. Trauma Surg Acute Care Open,2017,2(1):e000133. doi:10.1136/tsaco-2017-000133 .
|
2 |
SHULZHENKO N O, ZENS T J, BEEMS M V, et al. Number of rib fractures thresholds independently predict worse outcomes in older patients with blunt trauma[J]. Surgery,2017,161(4):1083-1089. doi:10.1016/j.surg.2016.10.018 .
|
3 |
RAMESH A N, KAMBHAMPATI C, MONSON J R T, et al. Artificial intelligence in medicine[J]. Ann R Coll Surg Engl,2004,86(5):334-338. doi:10.1308/147870804290 .
|
4 |
陈诗慧,刘维湘,秦璟,等. 基于深度学习和医学图像的癌症计算机辅助诊断研究进展[J].生物医学工程学杂志,2017,34(2):314-319. doi:10.7507/1001-5515.201609047 .
|
|
CHEN S H, LIU W X, QIN J, et al. Research progress of computer-aided diagnosis in cancer based on deep learning and medical imaging[J]. Shengwu Yixue Gongchengxue Zazhi,2017,34(2):314-319.
|
5 |
WEIKERT T, NOORDTZIJ L A, BREMERICH J, et al. Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography[J]. Korean J Radiol,2020,21(7):891-899. doi:10.3348/kjr.2019.0653 .
|
6 |
IBANEZ V, GUNZ S, ERNE S, et al. RiFNet: Automated rib fracture detection in postmortem computed tomography[J]. Forensic Sci Med Pathol,2022,18(1):20-29. doi:10.1007/s12024-021-00431-8 .
|
7 |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[J/OL]. arXiv,2018. (2018-04-08)[2023-02-13]. .
|
8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,2016:779-788. doi:10.1109/CVPR.2016.91 .
|
9 |
YANG H B, LIU P, HU Y Z, et al. Research on underwater object recognition based on YOLOv3[J]. Microsyst Technol,2021,27:1837-1844. doi:10.1007/s00542-019-04694-8 .
|
10 |
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,2017:6517-6525. doi:10.1109/CVPR.2017.690 .
|
11 |
袁小平,马绪起,刘赛. 改进YOLOv3的行人车辆目标检测算法[J].科学技术与工程,2021,21(8):3192-3198. doi:10.3969/j.issn.1671-1815.2021.08.031 .
|
|
YUAN X P, MA X Q, LIU S. An improved algorithm of pedestrian and vehicle detection based on YOLOv3[J]. Kexue Jishu Yu Gongcheng,2021,21(8):3192-3198.
|
12 |
YAO L, GUAN X, SONG X, et al. Rib fracture detection system based on deep learning[J]. Sci Rep,2021,11(1):23513. doi:10.1038/s41598-021-03002-7 .
|
13 |
刘想,谢辉辉,许玉峰,等. AI软件自动检出胸部CT图像上肋骨骨折的诊断效能研究[J].临床放射学杂志,2021,40(7):1369-1374.
|
|
LIU X, XIE H H, XU Y F, et al. Study on diagnostic efficiency of automatic detection of rib fracture on chest CT images with AI software[J]. Linchuang Fangshexue Zazhi,2021,40(7):1369-1374.
|
14 |
李星宇,雷禹,黄晓旗,等. 基于AI与人工阅片对肋骨骨折性质诊断价值的比较[J].中国医疗设备,2022,37(8):32-36. doi:10.3969/j.issn.1674-1633.2022.08.007 .
|
|
LI X Y, LEI Y, HUANG X Q, et al. Comparison of the diagnostic value of rib fracture properties based on AI and manual reading[J]. Zhongguo Yiliao Shebei,2022,37(8):32-36.
|
15 |
史丹迪,张忠伟,胡铁波,等. 人工智能辅助放射科住院医师诊断肋骨新鲜骨折的应用价值[J].现代实用医学,2022,34(10):1308-1310. doi:10.3969/j.issn.1671-0800.2022.10.019 .
|
|
SHI D D, ZHANG Z W, HU T B, et al. Application value of artificial intelligence in assisting radiology residents to diagnose fresh rib fractures[J]. Xiandai Shiyong Yixue,2022,34(10):1308-1310.
|
16 |
周清清,王佳硕,唐雯,等. 基于卷积神经网络成人肋骨骨折CT自动检测和分类的应用研究[J].影像诊断与介入放射学,2020,29(1):27-31. doi:10.3969/j.issn.1005-8001.2020.01.005 .
|
|
ZHOU Q Q, WANG J S, TANG W, et al. Automatic detection of adult rib fractures on CT using convolutional neural network[J]. Yingxiang Zhenduan Yu Jieru Fangshexue,2020,29(1):27-31.
|
17 |
蒋迪华,章建华,徐敏,等. 三种CT后处理技术在肋骨骨折诊断中的应用对比研究[J].中国医学计算机成像杂志,2020,26(4):375-379. doi:10.3969/j.issn.1006-5741.2020.04.017 .
|
|
JIANG D H, ZHANG J H, XU M, et al. Comparative study of the CT post-processing techniques in diagnosis of rib fracture[J]. Zhongguo Yixue Jisuanji Chengxiang Zazhi,2020,26(4):375-379.
|
18 |
徐传冰,张琪,赵佳,等. 人工智能全自动肋骨骨折检测系统诊断效能研究[J].电子元器件与信息技术,2022,6(2):204-206. doi:10.19772/j.cnki.2096-4455.2022.2.078 .
|
|
XU C B, ZHANG Q, ZHAO J, et al. Study on the diagnostic efficiency of artificial intelligence automatic rib fracture detection system[J]. Dianzi Yuanqijian Yu Xinxi Jishu,2022,6(2):204-206.
|
19 |
SHEN W, YANG F, MU W, et al. Automatic localization of vertebrae based on convolutional neural networks[C]// SPIE Medical Imaging. Proceedings Volume 9413, Medical Imaging 2015: Image Processing, Orlando, Florida, United States,2015:46-49. doi:10.1117/12.2081941 .
|
20 |
SUZANI A, RASOULIAN A, SEITEL A, et al. Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images[C]// SPIE Medical Imaging. Proceedings Volume 9415, Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Mode-ling, Orlando, Florida, United States,2015:63-70. doi:10.1117/12.2081542 .
|
21 |
罗鑫,王永雄,张佳鹏,等. 基于多重注意力的肋骨骨折检测研究[J/OL].控制工程. (2022-02-10)[2023-01-12]. .
|
|
LUO X, WANG Y X, ZHANG J P,et al. Detection of rib fractures based on multiple attention[J/OL]. Kongzhi Gongcheng. (2022-02-10)[2023-01-12]. .
|