1 |
安永明,张志威,刘剑霞. 骑跨横窦硬膜外血肿致伤方式审查1例[J].中国法医学杂志,2024,39(1):126-127. doi:10.13618/j.issn.1001-5728.2024.01.025 .
|
|
AN Y M, ZHANG Z W, LIU J X. Review of injury manners of epidural hematoma riding across transverse sinus: A case report[J]. Zhongguo Fayixue Zazhi,2024,39(1):126-127.
|
2 |
宋健文,徐彦昊,吕伟平,等. 他伤并自伤致颅脑损伤法医学鉴定1例[J].刑事技术,2023,48(5):543-546.doi:10.16467/j.1008-3650.2023.5013 .
|
|
SONG J W, XU Y H, LÜ W P, et al. Forensic clinical evaluation of complex craniocerebral injury caused by intentional injuries and self-inflicted injury: A case report[J]. Xingshi Jishu,2023,48(5):543-546.
|
3 |
KRANIOTI E F, NATHENA D, SPANAKIS K, et al. Unenhanced PMCT in the diagnosis of fatal traumatic brain injury in a charred body[J]. J Forensic Leg Med,2021,77:102093. doi:10.1016/j.jflm.2020.102093 .
|
4 |
KLEVNO V A, CHUMAKOVA Y V, KORO-TENKO O A, et al. Virtopsy for studying the sudden death of an adolescent[J]. Russ J Forensic Med,2020,6(1):41-45. doi:10.19048/2411-8729-2020-6-1-41-45 .
|
5 |
孙雪阳,杨琦帆,朱运良,等. 基于CT图像推断钝力性颅脑损伤成伤机制的logistic回归分析[J].法医学杂志,2022,38(2):217-222. doi:10.12116/j.issn.1004-5619.2021.410809 .
|
|
SUN X Y, YANG Q F, ZHU Y L, et al. Logistic regression analysis of the mechanism of blunt brain injury inference based on CT images[J]. Fayixue Zazhi,2022,38(2):217-222.
|
6 |
杨琦帆,孙雪阳,王彦斌,等. 基于深度学习的颅脑损伤机制自动化鉴别[J].法医学杂志,2022,38(2):223-230. doi:10.12116/j.issn.1004-5619.2021.410923 .
|
|
YANG Q F, SUN X Y, WANG Y B, et al. Automatic identification of brain injury mechanism based on deep learning[J]. Fayixue Zazhi,2022,38(2):223-230.
|
7 |
TAGHANAKI S A, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images: A review[J]. Artif Intell Rev,2021,54(1):137-178. doi:10.1007/s10462-020-09854-1 .
|
8 |
LI Y, HUANG Z, DONG X, et al. Forensic age estimation for pelvic X-ray images using deep learning[J]. Eur Radiol,2019,29(5):2322-2329. doi:10.1007/s00330-018-5791-6 .
|
9 |
CAO Y, MA Y, VIEIRA D N, et al. A potential method for sex estimation of human skeletons using deep learning and three-dimensional surface scanning[J]. Int J Legal Med,2021,135(6):2409-2421. doi:10.1007/s00414-021-02675-z .
|
10 |
武斌,李洋,夏志远,等. 虚拟解剖用于尸体颅脑损伤致伤物推断1例[J].中国法医学杂志,2022,37(1):21-23. doi:10.13618/j.issn.1001-5728.2022.01.005 .
|
|
WU B, LI Y, XIA Z Y, et al. Estimation of the injury instruments of cadaveric craniocerebral injuries using virtual autopsy: A case report[J]. Zhongguo Fayixue Zazhi,2022,37(1):21-23.
|
11 |
EBERT L C, HEIMER J, SCHWEITZER W, et al. Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning — A feasibility study[J]. Forensic Sci Med Pathol,2017,13(4):426-431. doi:10.1007/s12024-017-9906-1 .
|
12 |
尹艺晓,马金刚,张文凯,等. 从U-Net到Transformer:混合模型在医学图像分割中的应用进展[J].激光与光电子学进展,2025,62(2):0200001. doi:10.3788/LOP240875 .
|
|
YIN Y X, MA J G, ZHANG W K, et al. From U-Net to Transformer: Progress in the application of hybrid models in medical image segmentation[J]. Jiguang Yu Guangdianzixue Jinzhan,2025,62(2):0200001.
|
13 |
HERNANDEZ PETZSCHE M R, DE LA ROSA E, HANNING U, et al. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset[J]. Sci Data,2022,9(1):762. doi:10.1038/s41597-022-01875-5 .
|
14 |
WANG Y, WANG C, WU H, et al. An improved Deeplabv3+ semantic segmentation algorithm with multiple loss constraints[J]. PLoS One,2022,17(1):e0261582. doi:10.1371/journal.pone.0261582 .
|
15 |
KHODADADI SHOUSHTARI F, SINA S, DEH-KORDI A N V. Automatic segmentation of glioblastoma multiform brain tumor in MRI images: Using Deeplabv3+ with pre-trained Resnet18 weights[J]. Phys Med,2022,100:51-63. doi:10.1016/j.ejmp.2022.06.007 .
|
16 |
董贺文,孙溢,钱辉,等. 死后尸体CT影像学特征变化研究进展[J].法医学杂志,2019,35(6):716-720. doi:10.12116/j.issn.1004-5619.2019.06.013 .
|
|
DONG H W, SUN Y, QIAN H, et al. Research progress on postmortem changes of computed tomography imaging characteristics on corpses[J]. Fayixue Zazhi,2019,35(6):716-720.
|
17 |
刘晓菲,晋文举,夏志远,等. 尸体与活体颅脑CT影像的比较[J].中国法医学杂志,2020,35(4):350-354.doi:10.13618/j.issn.1001-5728.2020.04.002 .
|
|
LIU X F, JIN W J, XIA Z Y, et al. Comparison of craniocerebral computed tomography (CT) of the deceased and the living body[J]. Zhongguo Fayixue Zazhi,2020,35(4):350-354.
|
18 |
WANG Y, ZHOU Q, LIU J, et al. LEDNet: A lightweight encoder-decoder network for real-time semantic segmentation[C]// 2019 IEEE International Conference on Image Processing (ICIP). China: Taiwan,2019:1860-1864.
|
19 |
NACEUR M B, AKIL M, SAOULI R, et al. Deep convolutional neural networks for brain tumor segmentation: Boosting performance using deep transfer learning: Preliminary results[C]// Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Shenzhen,2019:303-315.
|
20 |
ZHENG H D, SUN Y L, KONG D W, et al. Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI[J]. Nat Commun,2022,13(1):841. doi:10.1038/s41467-022-28387-5 .
|
21 |
WACHINGER C, REUTER M, KLEIN T. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy[J]. NeuroImage,2018,170:434-445. doi:10.1016/j.neuroimage.2017.02.035 .
|
22 |
MCCOY D B, DUPONT S M, GROS C, et al. Convolutional neural network-based automated segmentation of the spinal cord and contusion injury: Deep learning biomarker correlates of motor impairment in acute spinal cord injury[J]. AJNR Am J Neuroradiol,2019,40(4):737-744. doi:10.3174/ajnr.A6020 .
|
23 |
李雪梅,曹琼,曹慧敏,等. 基于最大熵阈值分割法的颅脑CT图像血肿自动诊断系统研究[J].中国医学装备,2022,19(8):1-5. doi:10.3969/J.ISSN.1672-8270.2022.08.001 .
|
|
LI X M, CAO Q, CAO H M, et al. Study on the automatic diagnostic system for hematoma in CT image of brain based on threshold segmentation method of maximum entropy[J]. Zhongguo Yixue Zhuangbei,2022,19(8):1-5.
|
24 |
CHILAMKURTHY S, GHOSH R, TANAMALA S, et al. Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study[J]. Lancet,2018,392(10162):2388-2396. doi:10.1016/S0140-6736(18)31645-3 .
|
25 |
JANOT K, OLIVEIRA T R, FROMONT-HANKARD G, et al. Quantitative estimation of thrombus-erythro- cytes using MRI. A phantom study with clot analogs and analysis by statistic regression models[J]. J Neurointerv Surg,2020,12(2):181-185. doi:10.1136/neurintsurg-2019-014950 .
|
26 |
WANG X, HU Z, SHI S, et al. A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet[J]. Sci Rep,2023,13(1):7600. doi:10.1038/s41598-023-34379-2 .
|
27 |
PEASE M, AREFAN D, BARBER J, et al. Outcome prediction in patients with severe traumatic brain injury using deep learning from head CT scans[J]. Radiology,2022,304(2):385-394. doi:10.1148/radiol.212181 .
|
28 |
DE FEO R, HÄMÄLÄINEN E, MANNINEN E, et al. Convolutional neural networks enable robust automatic segmentation of the rat hippocampus in MRI after traumatic brain injury[J]. Front Neurol,2022,13:820267. doi:10.3389/fneur.2022.820267 .
|
29 |
HUANG J S, HUANG S Y, LIAO H Z, et al. Point-of-care ultrasound diagnosis of skull fracture in Chinese children 0-6 years old with scalp hematoma from minor head trauma: A preliminary prospective observational study[J]. Heliyon,2023,9(4):e15255. doi:10.1016/j.heliyon.2023.e15255 .
|
30 |
叶俊花,徐萌艳,方柳絮. 新生儿头皮血肿发生影响因素分析[J].中国实用护理杂志,2022,38(12):902-905. doi:10.3760/cma.j.cn211501-20210322-00860 .
|
|
YE J H, XU M Y, FANG L X. Analysis of influen-cing factors for the occurrence of neonatal scalp hematoma[J]. Zhongguo Shiyong Huli Zazhi,2022,38(12):902-905.
|
31 |
WU D R, XU Y F, LU B L. Transfer learning for EEG-based brain-computer interfaces: A review of progress made since 2016[J]. IEEE Trans Cogn Dev Syst,2022,14(1):4-19. doi:10.1109/tcds.2020.3007453 .
|
32 |
黄腾飞,刘巧梨,易海玲,等. 假性蛛网膜下腔出血征的CT定量分析和鉴别诊断[J].放射学实践,2021,36(12):1488-1492. doi:10.13609/j.cnki.1000-0313.2021.12.006 .
|
|
HUANG T F, LIU Q L, YI H L, et al. CT value quantitative analysis for diagnosis and differen-tiation of pseudo-subarachnoid hemorrhage[J]. Fangshexue Shijian,2021,36(12):1488-1492.
|
33 |
KLEVNO V A, CHUMAKOVA Y V, KOROTENKO O A, et al. Virtopsy for studying the sudden death of an adolescent[J]. Russ J Forensic Med,2020,6(1):41-45. doi:10.19048/2411-8729-2020-6-1-41-45 .
|
34 |
MESSAOUDI H, BELAID A, SALEM D BEN, et al. Cross-dimensional transfer learning in medical image segmentation with deep learning[J]. Med Image Anal,2023,88:102868. doi:10.1016/j.media.2023.102868 .
|
35 |
MA J, HE Y, LI F, et al. Segment anything in medical images[J]. Nat Commun,2024,15(1):654. doi:10.1038/s41467-024-44824-z .
|
36 |
CHENG D, LAM E Y. Transfer learning U-Net deep learning for lung ultrasound segmentation[J]. arXiv,2021. doi:10.48550/arXiv.2110.02196 .
|
37 |
张珊,马勋泰. 头颅CT诊断不明确的3例蛛网膜下腔出血临床分析[J].第三军医大学学报,2014,36(16):1757,1760. doi:10.16016/j.1000-5404.2014.16.026 .
|
|
ZHANG S, MA X T. Clinical analysis of subarachnoid hemorrhage with unclear diagnosis by craniocerebral CT: Three case reports[J].Di-san Junyi Daxue Xuebao,2014,36(16):1757,1760.
|
38 |
张建鹏,王浩馨,陈爱梅. 138例蛛网膜下腔出血CT分析[J].临床荟萃,2012,27(16):1425-1426.
|
|
ZHANG J P, WANG H X, CHEN A M. CT analysis of 138 cases of subarachnoid haemorrhage[J]. Linchuang Huicui,2012,27(16):1425-1426.
|