| 1 | 
																						 
											 ZHANG Z, ONG S H, ZHONG X, et al. Efficient 3D dental identification via signed feature histogram and learning keypoint detection[J]. Pattern Recogn,2016,60:189-204. doi:10.1016/j.patcog.2016. 05.007 .
											 											 | 
										
																													
																						| 2 | 
																						 
											 GÓMEZ O, IBÁÑEZ O, VALSECCHI A, et al. 3D-2D silhouette-based image registration for comparative radiography-based forensic identification[J]. Pattern Recogn,2018,83:469-480. doi:10.1016/j.pat cog.2018.06.011 .
											 											 | 
										
																													
																						| 3 | 
																						 
											 HOLOBINKO A. Forensic human identification in the United States and Canada: A review of the law, admissible techniques, and the legal implications of their application in forensic cases[J]. Forensic Sci Int,2012,222(1/2/3):394.e1-394.e13. doi:10 .
											 											 | 
										
																													
																						 | 
																						 
											 1016/j.forsciint.2012.06.001.
											 											 | 
										
																													
																						| 4 | 
																						 
											 LEUTENEGGER W. Functional aspects of pelvic morphology in Simian Primates[J]. J Hum Evol,1974,3(3):207-222. doi:10.1016/0047-2484(74)90179-1 .
											 											 | 
										
																													
																						| 5 | 
																						 
											 PHENICE T W. A newly developed visual method of sexing the os pubis[J]. Am J Phys Anthropol,1969,30(2):297-301. doi:10.1002/ajpa.1330300214 .
											 											 | 
										
																													
																						| 6 | 
																						 
											 KELLEY M A. Phenice’s visual sexing technique for the os pubis: A critique[J]. Am J Phys Anthropol,1978,48(1):121-122. doi:10.1002/ajpa.1330480118 .
											 											 | 
										
																													
																						| 7 | 
																						 
											 KLALES A R, OUSLEY S D, VOLLNER J M. A revised method of sexing the human innominate using Phenice’s nonmetric traits and statistical methods[J]. Am J Phys Anthropol,2012,149(1):104-114. doi:10 .
											 											 | 
										
																													
																						 | 
																						 
											 1002/ajpa.22102.
											 											 | 
										
																													
																						| 8 | 
																						 
											 KLALES A R, COLE S J. Improving nonmetric sex classification for hispanic individuals[J]. J Forensic Sci,2017,62(4):975-980. doi:10.1111/1556-4029.13391 .
											 											 | 
										
																													
																						| 9 | 
																						 
											 JOHNSTONE-BELFORD E, FLAVEL A, FRANKLIN D. Morphoscopic observations in clinical pelvic MDCT scans: Assessing the accuracy of the Phenice traits for sex estimation in a Western Australian population[J]. J Forensic Radiol Im,2018,12:5-10. doi:10 .
											 											 | 
										
																													
																						 | 
																						 
											 1016/j.jofri.2018.02.003.
											 											 | 
										
																													
																						| 10 | 
																						 
											 GÓMEZ-VALDÉS J A, MENÉNDEZ GARMENDIA A, GARCÍA-BARZOLA L, et al. Recalibration of the Klales et al. (2012) method of sexing the human innominate for Mexican populations[J]. Am J Phys Anthropol,2017,162(3):600-604. doi:10.1002/ajpa.23157 .
											 											 | 
										
																													
																						| 11 | 
																						 
											 SUTHERLAND L D, SUCHEY J M. Use of the ventral arc in pubic sex determination[J]. J Forensic Sci,1991,36(2):501-511.
											 											 | 
										
																													
																						| 12 | 
																						 
											 LOVELL N C. Test of Phenice’s technique for determining sex from the os pubis[J]. Am J Phys Anthropol,1989,79(1):117-120. doi:10.1002/ajpa.1330 790112 .
											 											 | 
										
																													
																						| 13 | 
																						 
											 MCFADDEN C, OXENHAM M F. Revisiting the Phenice technique sex classification results reported by MacLaughlin and Bruce (1990)[J]. Am J Phys Anthropol,2016,159(1):182-183. doi:10.1002/ajpa. 22839 .
											 											 | 
										
																													
																						| 14 | 
																						 
											 LESCIOTTO K M, DOERSHUK L J . Accuracy and reliability of the Klales et al. (2012) morphoscopic pelvic sexing method[J]. J Forensic Sci,2018,63(1):214-220. doi:10.1111/1556-4029.13501 .
											 											 | 
										
																													
																						| 15 | 
																						 
											 ZHAN M J, FAN F, QIU L R, et al. Estimation of stature and sex from sacrum and coccyx measurements by multidetector computed tomography in Chinese[J]. Leg Med (Tokyo),2018,34:21-26. doi:10.1016/j.legalmed.2018.07.003 .
											 											 | 
										
																													
																						| 16 | 
																						 
											 陶建华,陈聪,张怀宇,等. 鼻骨区骨折深度学习模型的建立和临床效能评估[J].放射学实践,2021,36(8):959-964. doi:10.13609/j.cnki.1000-0313.2021.08.003 .
											 											 | 
										
																													
																						 | 
																						 
											 TAO J H, CHEN C, ZHANG H Y, et al. Establishment and evaluation of the clinical efficacy of deep learning model for detection of nasal bone fracture on CT images[J]. Fangshexue Shijian,2021,36(8):959-964.
											 											 | 
										
																													
																						| 17 | 
																						 
											 钟碧霞,周冠群,许文琪,等. 基于深度学习的结肠癌病理图片分类研究[J].中国卫生统计,2021,38(3):363-367. doi:10.3969/j.issn.1002-3674.2021.03.010 .
											 											 | 
										
																													
																						 | 
																						 
											 ZHONG B X, ZHOU G Q, XU W Q, et al. Classification for pathological images of colon cancer with deep learning[J]. Zhongguo Weisheng Tongji,2021,38(3):363-367.
											 											 | 
										
																													
																						| 18 | 
																						 
											 刘晶,鲜军舫,李书玲,等. 深度学习模型检测胸部CT肺结节的临床效能评估[J].实用放射学杂志,2021,37(5):732-735,767. doi:10.3969/j.issn.1002-1671.2021.05.010 .
											 											 | 
										
																													
																						 | 
																						 
											 LIU J, XIAN J F, LI S L, et al. Evaluation of the efficacy of deep learning model in detecting pulmonary nodules on chest CT images[J]. Shiyong Fangshexue Zazhi,2021,37(5):732-735,767.
											 											 | 
										
																													
																						| 19 | 
																						 
											 ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118. doi:10.1038/nature21056 .
											 											 | 
										
																													
																						| 20 | 
																						 
											 SPAMPINATO C, PALAZZO S, GIORDANO D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Med Image Anal,2017,36:41-51. doi:10.1016/j.media.2016.10.010 .
											 											 | 
										
																													
																						| 21 | 
																						 
											 ZHOU Y, ZHANG J, HUANG J, et al. Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm[J]. Forensic Sci Int,2019,302:109922. doi:10.1016/j.forsciint.2019.109922 .
											 											 | 
										
																													
																						| 22 | 
																						 
											 ZHANG J, ZHOU Y, VIEIRA D N, et al. An efficient method for building a database of diatom populations for drowning site inference using a deep learning algorithm[J]. Int J Legal Med,2021,135(3):817-827. doi:10.1007/s00414-020-02497-5 .
											 											 | 
										
																													
																						| 23 | 
																						 
											 CAO Y, MA Y, VIEIRA D N, et al. A potential method for sex estimation of human skeletons using deep learning and three-dimensional surface scanning[J]. Int J Legal Med,2021,135(6):2409-2421. doi:10.1007/s00414-021-02675-z .
											 											 | 
										
																													
																						| 24 | 
																						 
											 LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. doi:10.1038/ nature14539 .
											 											 | 
										
																													
																						| 25 | 
																						 
											 SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA,2017:4278-4284.
											 											 | 
										
																													
																						| 26 | 
																						 
											 胡婷鸿,火忠,刘太昂,等. 基于深度学习实现维吾尔族青少年左手腕关节骨龄自动化评估[J].法医学杂志,2018,34(1):27-32. doi:10.3969/j.issn.1004-5619.2018.01.006 .
											 											 | 
										
																													
																						 | 
																						 
											 HU T H, HUO Z, LIU T A, et al. Automated assessment for bone age of left wrist joint in Uyghur teenagers by deep learning[J]. Fayixue Zazhi,2018,34(1):27-32.
											 											 | 
										
																													
																						| 27 | 
																						 
											 彭丽琴,万雷,汪茂文,等. 运用3种卷积神经网络模型对青少年骨盆骨龄评估的比较[J].法医学杂志,2020,36(5):622-630. doi:10.12116/j.issn.1004-5619.2020.05.004 .
											 											 | 
										
																													
																						 | 
																						 
											 PENG L Q, WAN L, WANG M W, et al. Comparison of three CNN models applied in bone age assessment of pelvic radiographs of adolescents[J]. Fayixue Zazhi,2020,36(5):622-630.
											 											 | 
										
																													
																						| 28 | 
																						 
											 PENG L Q, GUO Y C, WAN L, et al. Forensic bone age estimation of adolescent pelvis X-rays based on two-stage convolutional neural network[J]. Int J Legal Med,2022,136(3):797-810. doi:10.1007/s004 14-021-02746-1 .
											 											 | 
										
																													
																						| 29 | 
																						 
											 KLALES A R, VOLLNER J M, OUSLEY S D. A new metric procedure for the estimation of sex and ancestry from the human innominate[Z/OL]. [2022-04-12]. .
											 											 | 
										
																													
																						| 30 | 
																						 
											 VOLLNER J M, KLALES A R, OUSLEY S D. Sexing of the human innominate using non-metric traits and statistical analysis[J/OL]. [2022-04-12]. .
											 											 | 
										
																													
																						| 31 | 
																						 
											 COURTIOL P, MAUSSION C, MOARII M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome[J]. Nat Med,2019,25(10):1519-1525. doi:10.1038/s41591-019-05 83-3 .
											 											 | 
										
																													
																						| 32 | 
																						 
											 GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA,2016,316(22):2402-2410. doi:10.1001/jama.2016.17216 .
											 											 | 
										
																													
																						| 33 | 
																						 
											 DUNNMON J A, YI D, LANGLOTZ C P, et al. Assessment of convolutional neural networks for automated classification of chest radiographs[J]. Radio-logy,2019,290(2):537-544. doi:10.1148/radiol.20181 81422 .
											 											 | 
										
																													
																						| 34 | 
																						 
											 KERMANY D S, GOLDBAUM M, CAI W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell,2018,172(5):1122-1131.e9. doi:10.1016/j.cell.2018.02.010 .
											 											 | 
										
																													
																						| 35 | 
																						 
											 COUDRAY N, OCAMPO P S, SAKELLAROPOU-LOS T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nat Med,2018,24(10):1559-1567. doi:10.1038/s41591-018-0177-5 .
											 											 | 
										
																													
																						| 36 | 
																						 
											 KIM H E, COSA-LINAN A, SANTHANAM N, et al. Transfer learning for medical image classification: A literature review[J]. BMC Med Imaging,2022,22(1):69. doi:10.1186/s12880-022-00793-7 .
											 											 | 
										
																													
																						| 37 | 
																						 
											 OSIPENKO S, BOTASHEV K, NIKOLAEV E, et al. Transfer learning for small molecule retention predictions[J]. J Chromatogr A,2021,1644:462119. doi:10.1016/j.chroma.2021.462119 .
											 											 | 
										
																													
																						| 38 | 
																						 
											 JAIN S, SINGHANIA U, TRIPATHY B, et al. Deep learning-based transfer learning for classification of skin cancer[J]. Sensors (Basel),2021,21(23):8142. doi:10.3390/s21238142 .
											 											 |