Journal of Forensic Medicine ›› 2024, Vol. 40 ›› Issue (1): 20-29.DOI: 10.12116/j.issn.1004-5619.2022.521010
• Original Articles • Previous Articles Next Articles
Qing-wei FAN1,2(), Ling LI1, Hui-ling YANG1, Ting-ting DENG2, Dong-dong XU1, Yun WANG1, Bing DU1,2(
), Jiang-wei YAN3(
)
Received:
2022-10-31
Online:
2024-03-19
Published:
2024-02-25
Contact:
Bing DU, Jiang-wei YAN
CLC Number:
Qing-wei FAN, Ling LI, Hui-ling YANG, Ting-ting DENG, Dong-dong XU, Yun WANG, Bing DU, Jiang-wei YAN. A Bibliometric and Visual Analysis of the Current Status and Trends of Forensic Mixed Stain Research[J]. Journal of Forensic Medicine, 2024, 40(1): 20-29.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2022.521010
期刊全称 | 期刊缩写 | 发文量/篇 | 影响因子 | 分区 | 国家 | 被引频次 |
---|---|---|---|---|---|---|
Forensic Science International-Genetics | FORENSIC SCI INT GENET | 306 | 4.453 | Q1 | 爱尔兰 | 7 699 |
International Journal of Legal Medicine | INT J LEGAL MED | 87 | 2.791 | Q1 | 德国 | 846 |
Journal of Forensic Sciences | J FORENSIC SCI | 45 | 1.717 | Q3 | 美国 | 703 |
Electrophoresis | ELECTROPHORESIS | 39 | 3.595 | Q2 | 德国 | 463 |
Legal Medicine | LEGAL MED-TOKYO | 26 | 2.017 | Q3 | 美国 | 144 |
Forensic Science International | FORENSIC SCI INT | 23 | 2.676 | Q2 | 爱尔兰 | 151 |
Science & Justice | SCI JUSTICE | 23 | 1.993 | Q3 | 英国 | 439 |
Genes | GENES | 16 | 4.141 | Q2 | 瑞士 | 94 |
PLoS One | PLOS ONE | 14 | 3.752 | Q2 | 美国 | 294 |
Australian Journal of Forensic Sciences | AUS J FORENSIC SCI | 13 | 1.210 | Q4 | 英国 | 29 |
Tab. 1 Top 10 journals publishing articles in forensic mixed stain research
期刊全称 | 期刊缩写 | 发文量/篇 | 影响因子 | 分区 | 国家 | 被引频次 |
---|---|---|---|---|---|---|
Forensic Science International-Genetics | FORENSIC SCI INT GENET | 306 | 4.453 | Q1 | 爱尔兰 | 7 699 |
International Journal of Legal Medicine | INT J LEGAL MED | 87 | 2.791 | Q1 | 德国 | 846 |
Journal of Forensic Sciences | J FORENSIC SCI | 45 | 1.717 | Q3 | 美国 | 703 |
Electrophoresis | ELECTROPHORESIS | 39 | 3.595 | Q2 | 德国 | 463 |
Legal Medicine | LEGAL MED-TOKYO | 26 | 2.017 | Q3 | 美国 | 144 |
Forensic Science International | FORENSIC SCI INT | 23 | 2.676 | Q2 | 爱尔兰 | 151 |
Science & Justice | SCI JUSTICE | 23 | 1.993 | Q3 | 英国 | 439 |
Genes | GENES | 16 | 4.141 | Q2 | 瑞士 | 94 |
PLoS One | PLOS ONE | 14 | 3.752 | Q2 | 美国 | 294 |
Australian Journal of Forensic Sciences | AUS J FORENSIC SCI | 13 | 1.210 | Q4 | 英国 | 29 |
序号 | 作者 | 期刊 | 文题 | 年份 | LC/次 | GC/次 | LC/GC |
---|---|---|---|---|---|---|---|
1 | Perlin MW | J FORENSIC SCI | Validating TrueAllele® DNA Mixture Interpretation[ | 2011 | 98 | 152 | 0.644 7 |
2 | Taylor D | FORENSIC SCI INT GENET | The interpretation of single source and mixed DNA profiles[ | 2013 | 88 | 170 | 0.517 6 |
3 | Bleka O | FORENSIC SCI INT GENET | EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts[ | 2016 | 80 | 142 | 0.563 4 |
4 | Gill P | FORENSIC SCI INT GENET | DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods[ | 2012 | 58 | 121 | 0.479 3 |
5 | Bright JA | FORENSIC SCI INT GENET | Developing allelic and stutter peak height models for a continuous method of DNA interpretation[ | 2013 | 56 | 102 | 0.549 0 |
6 | Gill P | FORENSIC SCI INT GENET | A new methodological framework to interpret complex DNA profiles using likelihood ratios[ | 2013 | 51 | 87 | 0.586 2 |
7 | Bright JA | FORENSIC SCI INT GENET | Developmental validation of STRmixTM, expert software for the interpretation of forensic DNA profiles[ | 2016 | 50 | 73 | 0.684 9 |
8 | Cowell RG | J R STAT SOC C-APPL | Analysis of forensic DNA mixtures with artefacts[ | 2015 | 41 | 69 | 0.594 2 |
9 | Børsting C | FORENSIC SCI INT GENET | Next generation sequencing and its applications in forensic genetics[ | 2015 | 41 | 230 | 0.178 3 |
10 | Haned H | FORENSIC SCI INT GENET | Exploratory data analysis for the interpretation of low template DNA mixtures[ | 2012 | 40 | 67 | 0.597 0 |
Tab. 2 Top 10 highly cited publications in the field of forensic mixed stain
序号 | 作者 | 期刊 | 文题 | 年份 | LC/次 | GC/次 | LC/GC |
---|---|---|---|---|---|---|---|
1 | Perlin MW | J FORENSIC SCI | Validating TrueAllele® DNA Mixture Interpretation[ | 2011 | 98 | 152 | 0.644 7 |
2 | Taylor D | FORENSIC SCI INT GENET | The interpretation of single source and mixed DNA profiles[ | 2013 | 88 | 170 | 0.517 6 |
3 | Bleka O | FORENSIC SCI INT GENET | EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts[ | 2016 | 80 | 142 | 0.563 4 |
4 | Gill P | FORENSIC SCI INT GENET | DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods[ | 2012 | 58 | 121 | 0.479 3 |
5 | Bright JA | FORENSIC SCI INT GENET | Developing allelic and stutter peak height models for a continuous method of DNA interpretation[ | 2013 | 56 | 102 | 0.549 0 |
6 | Gill P | FORENSIC SCI INT GENET | A new methodological framework to interpret complex DNA profiles using likelihood ratios[ | 2013 | 51 | 87 | 0.586 2 |
7 | Bright JA | FORENSIC SCI INT GENET | Developmental validation of STRmixTM, expert software for the interpretation of forensic DNA profiles[ | 2016 | 50 | 73 | 0.684 9 |
8 | Cowell RG | J R STAT SOC C-APPL | Analysis of forensic DNA mixtures with artefacts[ | 2015 | 41 | 69 | 0.594 2 |
9 | Børsting C | FORENSIC SCI INT GENET | Next generation sequencing and its applications in forensic genetics[ | 2015 | 41 | 230 | 0.178 3 |
10 | Haned H | FORENSIC SCI INT GENET | Exploratory data analysis for the interpretation of low template DNA mixtures[ | 2012 | 40 | 67 | 0.597 0 |
1 | ARIA M, CUCCURULLO C. Bibliometrix: An R-tool for comprehensive science mapping analysis[J]. J Informetrics,2017,11(4):959-975. doi:10.1016/j.joi.2017.08.007 . |
2 | VAN ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010,84(2):523-538. doi:10.1007/s11192-009-0146-3 . |
3 | PERLIN M W, LEGLER M M, SPENCER C E, et al. Validating TrueAllele® DNA mixture interpretation[J]. J Forensic Sci,2011,56(6):1430-1447. doi:10.1111/j.1556-4029.2011.01859.x . |
4 | TAYLOR D, BRIGHT J A, BUCKLETON J. The interpretation of single source and mixed DNA profiles[J]. Forensic Sci Int Genet,2013,7(5):516-528. doi:10.1016/j.fsigen.2013.05.011 . |
5 | BLEKA Ø, STORVIK G, GILL P. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts[J]. Forensic Sci Int Genet,2016,21:35-44. doi:10.1016/j.fsigen. 2015.11.008 . |
6 | GILL P, GUSMÃO L, HANED H, et al. DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods[J]. Forensic Sci Int Genet,2012,6(6):679-688. doi:10.1016/j.fsigen.2012.06.002 . |
7 | BRIGHT J A, TAYLOR D, CURRAN J M, et al. Developing allelic and stutter peak height models for a continuous method of DNA interpretation[J]. Forensic Sci Int Genet,2013,7(2):296-304. doi:10.1016/j.fsigen.2012.11.013 . |
8 | GILL P, HANED H. A new methodological framework to interpret complex DNA profiles using likelihood ratios[J]. Forensic Sci Int Genet,2013,7(2):251-263. doi:10.1016/j.fsigen.2012.11.002 . |
9 | BRIGHT J A, TAYLOR D, MCGOVERN C, et al. Developmental validation of STRmixTM, expert software for the interpretation of forensic DNA profiles[J]. Forensic Sci Int Genet,2016,23:226-239. doi:10.1016/j.fsigen.20 16.05.007 . |
10 | COWELL R G, GRAVERSEN T, LAURITZEN S L, et al. Analysis of forensic DNA mixtures with artefacts[J]. J R Stat Soc Series B Appl Stat,2015,64(1):1-48. doi:10.1111/rssc.12071 . |
11 | BØRSTING C, MORLING N. Next generation sequencing and its applications in forensic genetics[J]. Forensic Sci Int Genet,2015,18:78-89. doi:10.1016/j.fsigen.2015.02.002 . |
12 | HANED H, SLOOTEN K, GILL P. Exploratory data analysis for the interpretation of low template DNA mixtures[J]. Forensic Sci Int Genet,2012,6(6):762-774. doi:10.1016/j.fsigen.2012.08.008 . |
13 | ZHANG J S, ZHANG J Y, TAO R Y, et al. A newly devised multiplex assay of novel polymorphic non-CODIS STRs as a valuable tool for forensic application [J]. Forensic Sci Int Genet, 2020, 48: 8. doi:10.1016/j.fsigen.2020.102341 . |
14 | WANG Z, ZHOU D, WANG H, et al. Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFilerTM NGS STR Panel and the Ion PGMTM System[J]. Forensic Sci Int Genet,2017,31:126-34. doi:10.1016/j.fsigen.2017. 09.004 . |
15 | MANABE S, FUJII K, FUKAGAWA T, et al. Evaluation of probability distribution models for stutter ratios in the typing system of GlobalFiler and 3500xL Genetic Analyzer[J]. Legal Med,2021,52:101906. doi:10.1016/j.legalmed.2021.101906 . |
16 | ALGHAFRI R, GOODWIN W, RALF A, et al. A novel multiplex assay for simultaneously analysing 13 rapidly mutating Y-STRs[J]. Forensic Sci Int Genet,2015,17:91-98. doi:10.1016/j.fsigen.2015. 04.004 . |
17 | ANDERSEN M M, MOGENSEN H S, ERIKSEN P S, et al. Yfiler® Plus population samples and dilution series: Stutters, analytic thresholds, and drop-out probabilities[J]. Int J Legal Med, 2017,131(6):1503-1511. doi:10.1007/s00414-017-1568-8 . |
18 | FOROUZESH M, IRANI S, SOLEIMANI A, et al. Application of Y-STR, DIP-STR and SNP-STR markers in interpretation of forensic genetic profiling: A narrative review[J]. Iran J Public Health, 2022,51(7):1538-1545. doi:10.18502/ijph.v51i7. 10087 . |
19 | CASTELLA V, GERVAIX J, HALL D. DIP-STR: Highly sensitive markers for the analysis of unbalanced genomic mixtures[J]. Human Mutation,2013,34(4):644-654. doi:10.1002/humu.22280 . |
20 | OLDONI F, CASTELLA V, GROSJEAN F, et al. Sensitive DIP-STR markers for the analysis of unbalanced mixtures from “touch” DNA samples[J]. Forensic Sci Int Genet,2017,28:111-117. doi:10.10 16/j.fsigen.2017.02.004 . |
21 | TAN Y, WANG L, WANG H, et al. An investigation of a set of DIP-STR markers to detect unbalanced DNA mixtures among the southwest Chinese Han population[J]. Forensic Sci Int Genet,2017,31:34-39. doi:10.1016/j.fsigen.2017.08.014 . |
22 | JIAN H, WANG L, LV M L, et al. A novel SNP-STR system based on a capillary electrophoresis platform[J]. Front Genet, 2021,12:636821. doi:10.3389/fgene.2021.636821 . |
23 | LIU J D, LI W Y, WANG J Q, et al. A new set of DIP-SNP markers for detection of unbalanced and degraded DNA mixtures[J]. Electrophoresis, 2019,40(14):1795-1804. doi:10.1002/elps.201900017 . |
24 | LIU J D, HAO T, CHENG X J, et al. DIP-microhaplotypes: New markers for detection of unbalanced DNA mixtures[J]. Int J Leg Med,2021,135(1):13-21. doi:10.1007/s00414-020-02288-y . |
25 | WARD D, HENRY J, TAYLOR D. Analysis of mixed DNA profiles from the RapidHITTM ID platform using probabilistic genotyping software STRmixTM [J]. Forensic Sci Int Genet,2022,58:102664. doi:10.1016/j.fsigen.2022.102664 . |
26 | ALOTAIBI H, ALSOLAMI F, ABOZINADAH E, et al. TAWSEEM: A deep-learning-based tool for estimating the number of unknown contributors in DNA profiling[J]. Electronics, 2022,11(4):548. doi:10.3390/electronics11040548 . |
27 | BENSCHOP C C G, VAN DER LINDEN J, HOOGENBOOM J, et al. Automated estimation of the number of contributors in autosomal short tandem repeat profiles using a machine learning approach[J]. Forensic Sci Int Genet,2019,43:102150. doi:10.1016/j.fsigen.2019.102150 . |
28 | MARCIANO M A, ADELMAN J D. PACE: Probabilistic Assessment for Contributor Estimation -- A machine learning-based assessment of the number of contributors in DNA mixtures[J]. Forensic Sci Int Genet,2017,27:82-91. doi:10.1016/j.fsigen.2016.11.006 . |
29 | VALTL J, MÖNICH U J, LUN D S, et al. A series of developmental validation tests for number of contributors platforms: Exemplars using NOCIt and a neural network[J]. Forensic Sci Int Genet,2021,54:102556. doi:10.1016/j.fsigen.2021.102556 . |
30 | 刘京,何光林,侯一平,等. 大规模平行测序在混合斑检测分析中的应用前景[J].法医学杂志, 2019,35(1):84-88,94. doi:10.12116/j.issn.1004-5619.2019.01.016 . |
LIU J, HE G L, HOU Y P, et al. Application prospect of massively parallel sequencing in mixed stain detection[J]. Fayixue Zazhi, 2019,35(1):84-88,94. | |
31 | OLDONI F, KIDD K K, PODINI D. Microhaplotypes in forensic genetics[J]. Forensic Sci Int Genet,2019,38:54-69. doi:10.1016/j.fsigen.2018. 09.009 . |
32 | PANG J B, RAO M, CHEN Q F, et al. A 124-plex microhaplotype panel based on next-generation sequencing developed for forensic applications[J]. Sci Rep, 2020,10:1945. doi:10.1038/s41598-020-58980-x . |
33 | CHEN A, XIONG L, QU Y, et al. Opportunity of next-generation sequencing-based short tandem repeat system for tumor source identification[J]. Front Oncol,2022,12:800028. doi:10.3389/fonc. 2022.800028 . |
34 | FAN H L, WANG L X, LIU C H, et al. Development and validation of a novel 133-plex forensic STR panel (52 STRs and 81 Y-STRs) using single-end 400 bp massive parallel sequencing[J]. Int J Legal Med,2022,136(2):447-464. doi:10.1007/s00414-021-027 38-1 . |
35 | CHENG K, SKILLMAN J, HICKEY S, et al. Variability and additivity of read counts for aSTRs in NGS DNA profiles[J]. Forensic Sci Int Genet,2020,48:102351. doi:10.1016/j.fsigen.2020.102351 . |
36 | CHAN MUN WEI J, ZHAO Z C, LI S C, et al. NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures[J]. Comput Biol Chem,2018,74:428-433. doi:10.1016/j.compbiolchem.2018.03.010 . |
37 | CORTES-FIGUEIREDO F, CARVALHO F S, FONSECA A C, et al. From forensics to clinical research: Expanding the variant calling pipeline for the precision ID mtDNA whole genome panel[J]. Int J Mol Sci, 2021,22(21):12031. doi:10.3390/ijms222112031 . |
38 | PALENCIA-MADRID L, VINUEZA-ESPINOSA D, BAETA M, et al. Validation of a 52-mtSNP minisequencing panel for haplogroup classification of forensic DNA samples[J]. Int J Legal Med,2020,134(3):929-936. doi:10.1007/s00414-020-02264-6 . |
39 | WISNER M, ERLICH H, SHIH S, et al. Resolution of mitochondrial DNA mixtures using a probe capture next generation sequencing system and phylogenetic-based software[J]. Forensic Sci Int Genet,2021,53:102531. doi:10.1016/j.fsigen.2021. 102531 . |
40 | GROSJEAN F, FAVRE M, CASTELLA V. Comparison between MACSprepTM forensic sperm microbead kit and Erase Sperm Isolation kit for the enrichment of sperm fractions recovered from sexual assault samples[J]. Int J Legal Med,2023,137(1):267-278. doi:10.1007/s00414-022-02861-7 . |
41 | COSTA S, CORREIA-DE-SÁ P, PORTO M J, et al. The use of laser microdissection in forensic sexual assault casework: Pros and cons compared to standard methods[J]. J Forensic Sci,2017,62(4):998-1006. doi:10.1111/1556-4029.13348 . |
42 | VANDEWOESTYNE M, VAN NIEUWERBURGH F, VAN HOOFSTAT D, et al. Evaluation of three DNA extraction protocols for forensic STR typing after laser capture microdissection[J]. Forensic Sci Int Genet,2012,6(2):258-262. doi:10.1016/j.fsigen.2011.06.002 . |
43 | JÄGER R. New perspectives for whole genome amplification in forensic STR analysis[J]. Int J Mol Sci,2022,23(13):7090. doi:10.3390/ijms23137090 . |
44 | HUFFMAN K, HANSON E, BALLANTYNE J. Probabilistic genotyping of single cell replicates from complex DNA mixtures recovers higher contributor LRs than standard analysis[J]. Sci Justice,2022,62(2):156-163. doi:10.1016/j.scijus.2022. 01.003 . |
45 | 马骏,童奇,高良弼,等. 尼龙膜套管分离技术对混合斑中精子细胞DNA的提取[J].法医学杂志,2018,34(4):417-419,427. doi:10.12116/j.issn.1004-5619.2018.04.015 . |
MA J, TONG Q, GAO L B, et al. Extraction of DNA from sperm cells in mixed stain by nylon membrane bushing separation technique[J]. Fayixue Zazhi,2018,34(4):417-419,427. | |
46 | SAUER E, EXTRA A, CACHÉE P, et al. Identification of organ tissue types and skin from forensic samples by microRNA expression analysis[J]. Forensic Sci Int Genet,2017,28:99-110. doi:10.1016/j.fsigen.2017.02.002 . |
47 | ZHANG X Y, LI J, LIU J D, et al. Identification of the vaginal secretion donor in mixture stains using polymorphic cSNPs on mRNA biomarkers[J]. Forensic Sci Int Genet,2022,59:102703. doi:10.1016/j.fsigen.2022.102703 . |
48 | LIU J D, CHENG X J, LIU F, et al. Identification of coding region SNPs from specific and sensitive mRNA biomarkers for the deconvolution of the semen donor in a body fluid mixture[J]. Forensic Sci Int Genet,2021,52:102483. doi:10.1016/j.fsigen.2021.102483 . |
[1] | Yan-ru YAO, Jing JIN, Ying-jie WANG, Jin-zhuan ZHANG, Ying-zhe LI, Yong-xin XU. Research Progress on Biological Evidence Identification in Fire Scenes [J]. Journal of Forensic Medicine, 2024, 40(1): 64-69. |
[2] | Wen-jing HU, Ting-ting YANG, Ya-ya WANG, Jiang-wei YAN. The Latest Research Progress on Cell-Free DNA and Prospects of Its Forensic Application [J]. Journal of Forensic Medicine, 2024, 40(1): 70-76. |
[3] | Yi-ming DONG, Chun-mei ZHAO, Nian-nian CHEN, Li LUO, Zhan-peng LI, Li-kai WANG, Xiao-qian LI, Ting-gan REN, Cai-rong GAO, Xiang-jie GUO. Visualization Analysis of Artificial Intelligence Literature in Forensic Research [J]. Journal of Forensic Medicine, 2024, 40(1): 1-14. |
[4] | Peng YUN, An-qi CHEN, Li-qin CHEN, Cheng-tao LI. Establishment and Application of a 42-plex Microhaplotype Assay in Forensic Genetics [J]. Journal of Forensic Medicine, 2024, 40(1): 50-58. |
[5] | Xin-yu DONG, Ru-xin ZHU, Yin-lei LEI, Rui-yang TAO, Cheng-tao LI. Traceability of Geographic Origin Using Human Skin and Oral Microbiota [J]. Journal of Forensic Medicine, 2023, 39(6): 557-563. |
[6] | Yi-hang HUANG, Wei-bo LIANG, Hui JIAN, Sheng-qiu QU. Modeling Methods and Influencing Factors for Age Estimation Based on DNA Methylation [J]. Journal of Forensic Medicine, 2023, 39(6): 601-607. |
[7] | Lin-lin GAO, Wei XIE, Su-juan ZHU, Da LI, Qin WANG, Liang HONG, You-ying LI. Forensic Validation and Application Evaluation of IDentifier DNA Typing Kit (Yan-Huang34) [J]. Journal of Forensic Medicine, 2023, 39(6): 579-585. |
[8] | Rui-yang TAO, Shou-yu WANG, Chun-yan YUAN, Ruo-cheng XIA, Cheng-tao LI. Application of SNaPshot Technology in Semen-Specific cSNP Genetic Marker [J]. Journal of Forensic Medicine, 2023, 39(5): 465-470. |
[9] | Zhong-hua WANG, Shu-jin LI. Research Progress on Molecular Biology of Human Height Estimation [J]. Journal of Forensic Medicine, 2023, 39(5): 487-492. |
[10] | Qi ZHANG, He-miao ZHAO, Kang YANG, Jing CHEN, Rui-qin YANG, Chong WANG. Construction of an Analysis Model of mRNA Markers in Menstrual Blood Based on Naïve Bayes and Multivariate Logistic Regression Methods [J]. Journal of Forensic Medicine, 2023, 39(5): 447-451. |
[11] | Lu CHEN, Zhe ZHOU, Sheng-qi WANG. Process of Forensic Medicine in DNA Identification of Aged Human Remains [J]. Journal of Forensic Medicine, 2023, 39(5): 478-486. |
[12] | Chao XIAO, Dai-xin HUANG. General Formulas for Calculating Commonly Used Kinship Index [J]. Journal of Forensic Medicine, 2023, 39(3): 276-282. |
[13] | Zheng TAN, Guan-ju MA, Li-hong FU, Xiao-jing ZHANG, Qian WANG, Guang-ping FU, Qing-qing DU, Shu-jin LI. Identification Strategy of Biological Half Sibling Relationship [J]. Journal of Forensic Medicine, 2023, 39(3): 262-270. |
[14] | Yu-ting WANG, Qiang ZHU, Yu-han HU, Yi-fan WEI, Ting-yun HOU, Ji ZHANG. Calculation of the Paternity Index for the Alleged Father Related to the Child’s Mother [J]. Journal of Forensic Medicine, 2023, 39(3): 271-275. |
[15] | Hui CHEN, Ran LI, Yu ZANG, Jing-yi YANG, Ri-ga WU, Hong-yu SUN. Evaluation of Detection Efficiency for Trio Full Sibling Testing [J]. Journal of Forensic Medicine, 2023, 39(3): 247-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||