Journal of Forensic Medicine ›› 2024, Vol. 40 ›› Issue (1): 70-76.DOI: 10.12116/j.issn.1004-5619.2022.521001
• Review • Previous Articles Next Articles
Wen-jing HU(), Ting-ting YANG, Ya-ya WANG, Jiang-wei YAN(
)
Received:
2022-10-03
Online:
2024-03-19
Published:
2024-02-25
Contact:
Jiang-wei YAN
CLC Number:
Wen-jing HU, Ting-ting YANG, Ya-ya WANG, Jiang-wei YAN. The Latest Research Progress on Cell-Free DNA and Prospects of Its Forensic Application[J]. Journal of Forensic Medicine, 2024, 40(1): 70-76.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2022.521001
1 | MANDEL P, MÉTAIS P. Nuclear acids in human blood plasma[J]. C R Seances Soc Biol Fil,1948,142(3/4):241-243. |
2 | WERNER B, WARTON K, FORD C E. Transcending blood-opportunities for alternate liquid biopsies in oncology[J]. Cancers,2022,14(5):1309. doi:10.3390/cancers14051309 . |
3 | HAN D S C, DENNIS LO Y M. The nexus of cfDNA and nuclease biology[J]. Trends Genet,2021,37(8):758-770. doi:10.1016/j.tig.2021.04.005 . |
4 | THIERRY A R, MESSAOUDI S EL, GAHAN P B, et al. Origins, structures, and functions of circulating DNA in oncology[J]. Cancer Metastasis Rev,2016,35(3):347-376. doi:10.1007/s10555-016-9629-x . |
5 | BRONKHORST A J, UNGERER V, DIEHL F, et al. Towards systematic nomenclature for cell-free DNA[J]. Hum Genet,2021,140(4):565-578. doi:10.1007/s00439-020-02227-2 . |
6 | SNYDER M W, KIRCHER M, HILL A J, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin[J]. Cell,2016,164(1/2):57-68. doi:10.1016/j.cell.2015.11.050 . |
7 | SANCHEZ C, ROCH B, MAZARD T, et al. Circulating nuclear DNA structural features, origins, and complete size profile revealed by fragmentomics[J]. JCI Insight,2021,6(7):e144561. doi:10.1172/jci.insight.144561 . |
8 | SZILÁGYI M, PÖS O, MÁRTON É, et al. Circulating cell-free nucleic acids: Main characteristics and clinical application[J]. Int J Mol Sci,2020,21(18):6827. doi:10.3390/ijms21186827 . |
9 | GIACONA M B, RUBEN G C, ICZKOWSKI K A, et al. Cell-free DNA in human blood plasma: Length measurements in patients with pancreatic cancer and healthy controls[J]. Pancreas,1998,17(1):89-97. doi:10.1097/00006676-199807000-00012 . |
10 | MEDDEB R, AMIR DACHE Z AL, THEZENAS S, et al. Quantifying circulating cell-free DNA in humans[J]. Sci Rep,2019,9(1):5220. doi:10.1038/s41598-019-41593-4 . |
11 | THURAIRAJAH K, BRIGGS G D, BALOGH Z J. The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies[J]. Eur J Trauma Emerg Surg,2018,44(3):325-334. doi:10.1007/s00068-018-0954-3 . |
12 | JIANG P Y, CHAN C W M, CHAN K C, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients[J]. Proc Natl Acad Sci USA,2015,112(11):E1317-E1325. doi:10.1073/ pnas.1500076112 . |
13 | ZHANG R Y, NAKAHIRA K, GUO X X, et al. Very short mitochondrial DNA fragments and heteroplasmy in human plasma[J]. Sci Rep,2016,6:36097. doi:10.1038/srep36097 . |
14 | BURNHAM P, KIM M S, AGBOR-ENOH S, et al. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma[J]. Sci Rep,2016,6:27859. doi:10.1038/srep27859 . |
15 | BARRA G B, SANTA RITA T H, DE ALMEIDA VASQUES J, et al. EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples[J]. Clin Biochem,2015,48(15):976-981. doi:10.1016/j.clinbiochem.2015.02.014 . |
16 | JUNG M, KLOTZEK S, LEWANDOWSKI M, et al. Changes in concentration of DNA in serum and plasma during storage of blood samples[J]. Clin Chem,2003,49(6Pt1):1028-1029. doi:10.1373/49.6. 1028 . |
17 | 徐鹏,段小瑜,张海梅,等. 专用采血管对血浆中循环游离DNA保存效果的影响[J].检验医学与临床,2021,18(8):1035-1037,1041. doi:10.3969/j.issn.1672-9455.2021.08.003 . |
XU P, DUAN X Y, ZHANG H M, et al. Infuence of special blood collection tubes on preservation effect of circulating free DNA in plasma[J]. Jianyan Yixue Yu Linchuang,2021,18(8):1035-1037,1041. | |
18 | FERNANDO M R, CHEN K, NORTON S, et al. A new methodology to preserve the original proportion and integrity of cell-free fetal DNA in maternal plasma during sample processing and storage[J]. Prenat Diagn,2010,30(5):418-424. doi:10.1002/pd.2484 . |
19 | WARE S A, DESAI N, LOPEZ M, et al. An automated, high-throughput methodology optimized for quantitative cell-free mitochondrial and nuclear DNA isolation from plasma[J]. J Biol Chem,2020,295(46):15677-15691. doi:10.1074/jbc.RA120.015237 . |
20 | MESSAOUDI S EL, ROLET F, MOULIERE F, et al. Circulating cell free DNA: Preanalytical considerations[J]. Clin Chimica Acta,2013,424:222-230. doi:10.1016/j.cca.2013.05.022 . |
21 | TRIGG R M, MARTINSON L J, PARPART-LI S, et al. Factors that influence quality and yield of circulating-free DNA: A systematic review of the methodology literature[J]. Heliyon,2018,4(7):e00699. doi:10.1016/j.heliyon.2018.e00699 . |
22 | CAVANAUGH S E, BATHRICK A S. Direct PCR amplification of forensic touch and other challenging DNA samples: A review[J]. Forensic Sci Int Genet,2018,32:40-49. doi:10.1016/j.fsigen.2017.10.005 . |
23 | RYAN A, BANER J, DEMKO Z, et al. Informatics-based, highly accurate, noninvasive prenatal paternity testing[J]. Genet Med,2013,15(6):473-477. doi:10.1038/gim.2012.155 . |
24 | SONG W Q, XIAO N, ZHOU S H, et al. Non-invasive prenatal paternity testing by analysis of Y-chromosome mini-STR haplotype using next-generation sequencing[J]. PLoS One,2022,17(4):e0266332. doi:10.1371/journal.pone.0266332 . |
25 | SONG P, WU L R, YAN Y H, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics[J]. Nat Biomed Eng,2022,6(3):232-245. doi:10.1038/s41551-021-00837-3 . |
26 | WEN L, LI J Y, GUO H H, et al. Genome-scale detection of hypermethylated CpG Islands in circulating cell-free DNA of hepatocellular carcinoma patients[J]. Cell Res,2015,25(11):1250-1264. doi:10.1038/cr.2015.126 . |
27 | SHEN S Y, BURGENER J M, BRATMAN S V, et al. Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA[J]. Nat Protoc,2019,14(10):2749-2780. doi:10.1038/s41596-019-0202-2 . |
28 | HUANG J Y, SOUPIR A C, WANG L. Cell-free DNA methylome profiling by MBD-seq with ultra-low input[J]. Epigenetics,2022,17(3):239-252. doi:10.1080/15592294.2021.1896984 . |
29 | DENNIS LO Y M, CORBETTA N, CHAMBERLAIN P F, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet,1997,350(9076):485-487. doi:10.1016/S0140-6736(97)02174-0 . |
30 | KITA T, YAMAGUCHI H, YOKOYAMA M, et al. Morphological study of fragmented DNA on touched objects[J]. Forensic Sci Int Genet,2008,3(1):32-36. doi:10.1016/j.fsigen.2008.09.002 . |
31 | QUINONES I, DANIEL B. Cell free DNA as a component of forensic evidence recovered from touched surfaces[J]. Forensic Sci Int Genet,2012,6(1):26-30. doi:10.1016/j.fsigen.2011.01.004 . |
32 | VANDEWOESTYNE M, VAN HOOFSTAT D, FRANSSEN A, et al. Presence and potential of cell free DNA in different types of forensic samples[J]. Forensic Sci Int Genet,2013,7(2):316-320. doi:10.1016/j.fsigen.2012.12.005 . |
33 | BURRILL J, DANIEL B, FRASCIONE N. Technical Note: Lysis and purification methods for increased recovery of degraded DNA from touch deposit swabs[J]. Forensic Sci Int,2022,330:111102. doi:10.1016/j.forsciint.2021.111102 . |
34 | BURRILL J, KOMBARA A, DANIEL B, et al. Exploration of cell-free DNA (cfDNA) recovery for touch deposits[J]. Forensic Sci Int Genet,2021,51:102431. doi:10.1016/j.fsigen.2020.102431 . |
35 | WAGNER J, DZIJAN S, MARJANOVIĆ D, et al. Non-invasive prenatal paternity testing from maternal blood[J]. Int J Legal Med,2009,123(1):75-79. doi:10.1007/s00414-008-0292-9 . |
36 | 陈阳,胡利平,马波,等. 血浆游离DNA的STR分型检测研究[J].昆明医科大学学报,2014,35(1):140-143. |
CHEN Y, HU L P, MA B, et al. Study on STR genotyping of cell free DNA in plasma[J]. Kunming Yike Daxue Xuebao,2014,35(1):140-143. | |
37 | SHIH S Y, BOSE N, GONÇALVES A B R, et al. Applications of probe capture enrichment next generation sequencing for whole mitochondrial genome and 426 nuclear SNPs for forensically challenging samples[J]. Genes,2018,9(1):49. doi:10.3390/genes9010049 . |
38 | BOSE N, CARLBERG K, SENSABAUGH G, et al. Target capture enrichment of nuclear SNP markers for massively parallel sequencing of degraded and mixed samples[J]. Forensic Sci Int Genet,2018,34:186-196. doi:10.1016/j.fsigen.2018.01.010 . |
39 | KIM E H, LEE H Y, YANG I S, et al. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons[J]. Forensic Sci Int Genet,2016,22:1-7. doi:10.1016/j.fsigen.2016.01.001 . |
40 | KIM J, KIM H, NAM Y H, et al. Efficacy of reduced-size short tandem repeat PCR analysis for degraded DNA samples[J]. Genes Genomics,2021,43(7):749-758. doi:10.1007/s13258-021-01066-3 . |
41 | VAN NIEUWERBURGH F, VAN HOOFSTAT D, VAN NESTE C, et al. Retrospective study of the impact of miniSTRs on forensic DNA profiling of touch DNA samples[J]. Sci Justice,2014,54(5):369-372. doi:10.1016/j.scijus.2014.05.009 . |
42 | URTIAGA G O, DOMINGUES W B, KOMNINOU E R, et al. DNA microarray for forensic intelligence purposes: High-density SNP profiles obtained directly from casework-like samples with and without a DNA purification step[J]. Forensic Sci Int,2022,332:111181. doi:10.1016/j.forsciint. 2022.111181 . |
43 | TILLMAR A, SJÖLUND P, LUNDQVIST B, et al. Whole-genome sequencing of human remains to enable genealogy DNA database searches -- A case report[J]. Forensic Sci Int Genet,2020,46:102233. doi:10.1016/j.fsigen.2020.102233 . |
44 | ADACHI N, UMETSU K, SHOJO H. Forensic strategy to ensure the quality of sequencing data of mitochondrial DNA in highly degraded samples[J]. Leg Med,2014,16(1):52-55. doi:10.1016/j.legalmed.2013.10.001 . |
45 | BRAMBATI B, SIMONI G, TRAVI M, et al. Genetic diagnosis by chorionic villus sampling before 8 gestational weeks: Efficiency, reliability, and risks on 317 completed pregnancies[J]. Prenat Diagn,1992,12(10):789-799. doi:10.1002/pd.1970121004 . |
46 | ELCHALAL U, SHACHAR I B, PELEG D, et al. Maternal mortality following diagnostic 2nd-trimester amniocentesis[J]. Fetal Diagn Ther,2004,19(2):195-198. doi:10.1159/000075150 . |
47 | YU S C Y, LEE S W Y, JIANG P Y, et al. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing[J]. Clin Chem,2013,59(8):1228-1237. doi:10.1373/clinchem.2013.203679 . |
48 | FAN H C, BLUMENFELD Y J, CHITKARA U, et al. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing[J]. Clin Chem,2010,56(8):1279-1286. doi:10.1373/clinche m.2010.144188 . |
49 | GYSI M, ARORA N, SULZER A, et al. Non-invasive prenatal paternity testing with STRs: A pilot study[J]. Forensic Sci Int Genet Suppl Ser,2015,5:e291-e292. doi:10.1016/j.fsigss.2015.09.115 . |
50 | 蒋浩君. STR及SNP分型技术在无创产前亲子鉴定中的应用[D].南京:东南大学,2016. |
JIANG H J. A pilot study of noninvasive prenatal paternity tesing based on STR and SNP typing[D]. Nanjing: Southeast University,2016. | |
51 | HOMER N, SZELINGER S, REDMAN M, et al. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays[J]. PLoS Genet,2008,4(8):e1000167. doi:10.1371/journal.pgen.1000167 . |
52 | CHANG L, YU H Y, MIAO X Y, et al. Development and comprehensive evaluation of a noninvasive prenatal paternity testing method through a scaled trial[J]. Forensic Sci Int Genet,2019,43:102158. doi:10.1016/j.fsigen.2019.102158 . |
53 | YANG D G, LIANG H, LIN S B, et al. An SNP panel for the analysis of paternally inherited alleles in maternal plasma using ion Torrent PGM[J]. Int J Legal Med,2018,132(2):343-352. doi:10.1007/s00414-017-1594-6 . |
54 | OU X L, QU N. Noninvasive prenatal paternity testing by target sequencing microhaps[J]. Forensic Sci Int Genet,2020,48:102338. doi:10.1016/j.fsigen.2020.102338 . |
55 | MORIOT A, HALL D. Analysis of fetal DNA in maternal plasma with markers designed for forensic DNA mixture resolution[J]. Genet Med,2019,21(3):613-621. doi:10.1038/s41436-018-0102-9 . |
56 | POON L L M, LEUNG T N, LAU T K, et al. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma[J]. Clin Chem,2002,48(1):35-41. |
57 | PAPAGEORGIOU E A, FIEGLER H, RAKYAN V, et al. Sites of differential DNA methylation between placenta and peripheral blood: Molecular markers for noninvasive prenatal diagnosis of aneuploidies[J]. Am J Pathol,2009,174(5):1609-1618. doi:10.2353/ajpath.2009.081038 . |
58 | LI N, DU Q X, BAI R F, et al. Vitality and wound-age estimation in forensic pathology: Review and future prospects[J]. Forensic Sci Res,2020,5(1):15-24. doi:10.1080/20961790.2018.1445441 . |
59 | LAM N Y L, RAINER T H, CHAN L Y S, et al. Time course of early and late changes in plasma DNA in trauma patients[J]. Clin Chem,2003,49(8):1286-1291. doi:10.1373/49.8.1286 . |
60 | REN B Q, LIU F W, XU F, et al. Is plasma cell-free DNA really a useful marker for diagnosis and treatment of trauma patients?[J]. Clin Chimica Acta,2013,424:109-113. doi:10.1016/j.cca.2013.05.015 . |
61 | GÖGENUR M, BURCHARTH J, GÖGENUR I. The role of total cell-free DNA in predicting outcomes among trauma patients in the intensive care unit: A systematic review[J]. Crit Care,2017,21(1):14. doi:10.1186/s13054-016-1578-9 . |
62 | MCILROY D J, JARNICKI A G, AU G G, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery[J]. J Crit Care,2014,29(6):1133.e1-1133.e5. doi:10.1016/j.jcrc.2014.07.013 . |
63 | STORTZ J A, HAWKINS R B, HOLDEN D C, et al. Cell-free nuclear, but not mitochondrial, DNA concentrations correlate with the early host inflammatory response after severe trauma[J]. Sci Rep,2019,9(1):13648. doi:10.1038/s41598-019-50044-z . |
64 | FOX A, GAL S, FISHER N, et al. Quantification of circulating cell-free plasma DNA and endothelial gene RNA in patients with burns and relation to acute thermal injury[J]. Burns,2008,34(6):809-816. doi:10.1016/j.burns.2007.10.003 . |
65 | CHIU T W, YOUNG R, CHAN L Y S, et al. Plasma cell-free DNA as an indicator of severity of injury in burn patients[J]. Clin Chem Lab Med,2006,44(1):13-17. doi:10.1515/CCLM.2006.003 . |
66 | BRODBECK K, KERN S, SCHICK S, et al. Quantitative analysis of individual cell-free DNA concentration before and after penetrating trauma[J]. Int J Legal Med,2019,133(2):385-393. doi:10.1007/s00414-018-1945-y . |
67 | SUN K, JIANG P Y, CHENG S H, et al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin[J]. Genome Res,2019,29(3):418-427. doi:10.1101/gr.242719.118 . |
[1] | Yan-ru YAO, Jing JIN, Ying-jie WANG, Jin-zhuan ZHANG, Ying-zhe LI, Yong-xin XU. Research Progress on Biological Evidence Identification in Fire Scenes [J]. Journal of Forensic Medicine, 2024, 40(1): 64-69. |
[2] | Qing-wei FAN, Ling LI, Hui-ling YANG, Ting-ting DENG, Dong-dong XU, Yun WANG, Bing DU, Jiang-wei YAN. A Bibliometric and Visual Analysis of the Current Status and Trends of Forensic Mixed Stain Research [J]. Journal of Forensic Medicine, 2024, 40(1): 20-29. |
[3] | Yun-hong XING, Yang LI, Wen-zheng WANG, Liang-liang WANG, Le-le SUN, Qiu-xiang DU, Jie CAO, Guang-long HE, Jun-hong SUN. Pathological Characteristics and Classification of Unstable Coronary Atherosclerotic Plaques [J]. Journal of Forensic Medicine, 2024, 40(1): 59-63. |
[4] | Peng YUN, An-qi CHEN, Li-qin CHEN, Cheng-tao LI. Establishment and Application of a 42-plex Microhaplotype Assay in Forensic Genetics [J]. Journal of Forensic Medicine, 2024, 40(1): 50-58. |
[5] | Bin YANG, Lu-yao XU, Ling-yue LI, Dong-fang QIAO, Si-hao DU, Xia YUE, Hui-jun WANG. Pathological Changes and Cause of Death Associated with the Global Novel Coronavirus Disease (COVID-19) [J]. Journal of Forensic Medicine, 2023, 39(6): 586-595. |
[6] | Xin-yu DONG, Ru-xin ZHU, Yin-lei LEI, Rui-yang TAO, Cheng-tao LI. Traceability of Geographic Origin Using Human Skin and Oral Microbiota [J]. Journal of Forensic Medicine, 2023, 39(6): 557-563. |
[7] | Yi-hang HUANG, Wei-bo LIANG, Hui JIAN, Sheng-qiu QU. Modeling Methods and Influencing Factors for Age Estimation Based on DNA Methylation [J]. Journal of Forensic Medicine, 2023, 39(6): 601-607. |
[8] | Lin-lin GAO, Wei XIE, Su-juan ZHU, Da LI, Qin WANG, Liang HONG, You-ying LI. Forensic Validation and Application Evaluation of IDentifier DNA Typing Kit (Yan-Huang34) [J]. Journal of Forensic Medicine, 2023, 39(6): 579-585. |
[9] | Xing-yu MA, Hao CHENG, Zhong-duo ZHANG, Ye-ming LI, Dong ZHAO. Research Progress of Metabolomics Techniques Combined with Machine Learning Algorithm in Wound Age Estimation [J]. Journal of Forensic Medicine, 2023, 39(6): 596-600. |
[10] | Rui-yang TAO, Shou-yu WANG, Chun-yan YUAN, Ruo-cheng XIA, Cheng-tao LI. Application of SNaPshot Technology in Semen-Specific cSNP Genetic Marker [J]. Journal of Forensic Medicine, 2023, 39(5): 465-470. |
[11] | Wen LI, Hao-zhe LI, Chen CHEN, Wei-xiong CAI. Research Progress and Application Prospect of Facial Micro-Expression Analysis in Forensic Psychiatry [J]. Journal of Forensic Medicine, 2023, 39(5): 493-500. |
[12] | Zhong-hua WANG, Shu-jin LI. Research Progress on Molecular Biology of Human Height Estimation [J]. Journal of Forensic Medicine, 2023, 39(5): 487-492. |
[13] | Qi ZHANG, He-miao ZHAO, Kang YANG, Jing CHEN, Rui-qin YANG, Chong WANG. Construction of an Analysis Model of mRNA Markers in Menstrual Blood Based on Naïve Bayes and Multivariate Logistic Regression Methods [J]. Journal of Forensic Medicine, 2023, 39(5): 447-451. |
[14] | Lu CHEN, Zhe ZHOU, Sheng-qi WANG. Process of Forensic Medicine in DNA Identification of Aged Human Remains [J]. Journal of Forensic Medicine, 2023, 39(5): 478-486. |
[15] | Yong ZENG, Dong-hua ZOU, Ying FAN, Qing XU, Lu-yang TAO, Yi-jiu CHEN, Zheng-dong LI. Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics [J]. Journal of Forensic Medicine, 2023, 39(5): 471-477. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||