法医学杂志 ›› 2013, Vol. 29 ›› Issue (2): 81-85.DOI: 10.3969/j.issn.1004-5619.2013.02.001

• 论著 •    下一篇

人体胸廓骨骼三维有限元模型的构建及生物力学分析

邵  煜1,2,黄  平2,李正东2,刘宁国2,万  雷2,邹冬华2,陈忆九2   

  1. (1. 复旦大学上海医学院法医学系,上海 200032; 2. 司法部司法鉴定科学技术研究所 上海市法医学重点实验室,上海 200063)
  • 发布日期:2013-04-25 出版日期:2013-04-28
  • 通讯作者: 邹冬华,男,助理研究员,主要从事法医病理学研究;E-mail:zoudonghua2008@yahoo.com.cn 陈忆九,男,研究员,博士研究生导师,主要从事法医病理学研究;E-mail:yijiuchen@yahoo.com.cn
  • 作者简介:邵煜(1986—),男,上海人,硕士研究生,主要从事法医病理学研究;E-mail:shaoyu1986@gmail.com
  • 基金资助:

    “十二五”国家科技支撑计划项目(2012BAK16B02);国家自然科学基金面上项目(81273338);国家自然青年科学基金资助项目(81102300);上海市法医学重点实验室资助项目(12DZ2271500)

Establishment of a 3D Finite Element Model of Human Thoracic Cage and Biomechanical Analysis

SHAO YU1,2, HUANG PING2, LI ZHENG-DONG2, LIU NING-GUO2, WAN LEI2, ZOU DONG-HUA2, CHEN YI-JIU2   

  1. (1. Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China; 2. Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, P.R.China, Shanghai 200063, China)
  • Online:2013-04-25 Published:2013-04-28

摘要: 目的 建立完整的人体胸廓骨骼三维有限元模型,并探索力作用变化趋势。 方法 对尸体胸部进行多层螺旋CT(multislice computed tomography,MSCT)扫描,使用有限元建模软件根据CT图像数据对胸廓骨性结构进行三维重建并生成有限元模型,模拟胸廓右季肋部遭受速度为4、6与8 m/s的钝性物体正面击打,分析胸廓受击打后的应力、应变分布情况。 结果 成功构建解剖学高仿真度的人体胸廓有限元模型,模型体网格平均质量>0.7。生物力学分析结果显示胸廓受击打后发生局部弯曲及整体变形,应力与应变产生于初始打击部位肋骨,后沿肋骨向两侧传播,并于肋骨后侧及近胸骨处集中,6 m/s与8 m/s的打击速度可造成打击部位肋骨应变值超出相应强度极限,发生骨折。 结论 应用有限元建模分析软件能够建立符合真实情况的高质量的人体胸廓三维有限元模型,且模型可用于分析外力作用下胸廓骨性结构的应变趋势,为胸部损伤的致伤方式推断提供了新的途径和方法。

关键词: 法医病理学, 生物力学, 有限元分析, 体层摄影术, 螺旋计算机, 胸廓

Abstract: Objective To establish a 3D finite element model of the complete human thoracic cage, and to perform a biomechanical analysis. Methods The multislice computed tomography (MSCT) images of human thorax were obtained and used to develop a 3D reconstruction and a finite element model of the thoracic cage by finite element modeling software. The right hypochondrium area of the model was simulated to sustain the frontal impacts by a blunt impactor with velocities of 4, 6 and 8 m/s, and the distribution of stress and strain after the impact of the model was analyzed. Results A highly anatomically simulated finite element model of human thoracic cage was successfully developed with a fine element mean quality which was above 0.7. The biomechanical analysis showed that the thoracic cage revealed both local bending and overall deformation after the impact. Stress and strain arose from the initial impact area of the ribs, and then spread along the ribs to both sides, at last concentrated in the posterior side of the ribs and near the sternum. Impacts with velocities of 6 m/s and 8 m/s were predicted to cause rib fractures when the strain of the ribs were beyond the threshold values. Conclusion The finite element modeling software is capable of establishing a highly simulated 3D finite element model of human thoracic cage. And the established model could be applicable to analyze stress and strain distribution of the thoracic cage under forces and to provide a new method for the forensic identification of chest injury.

Key words: forensic pathology, biomechanics, finite element analysis, tomography, spiral computed, thorax

中图分类号: