法医学杂志 ›› 2018, Vol. 34 ›› Issue (6): 585-589.DOI: 10.12116/j.issn.1004-5619.2018.06.002

所属专题: 法医毒物学新技术

• 专题 • 上一篇    下一篇

LC-MS/MS测定血液、肝组织中的欧夹竹桃苷

翟金晓1,2,严  慧1,沈  敏1,沈保华1,刘  伟1   

  1. 1. 司法鉴定科学研究院 上海市法医学重点实验室 上海市司法鉴定专业技术服务平台,上海 200063; 2. 济宁医学院法医学与医学检验学院,山东 济宁 272067
  • 发布日期:2018-12-25 出版日期:2018-12-28
  • 通讯作者: 通信作者:刘伟,女,主任法医师,硕士研究生导师,主要从事法医毒物学研究;E-mail:liuw@ssfjd.cn 通信作者:沈保华,男,主任法医师,主要从事法医毒物学研究;E-mail:shenbh@ssfjd.cn
  • 作者简介:翟金晓(1989—),女,硕士,讲师,主要从事法医毒物学研究;E-mail:zhaijinxiao@126.com
  • 基金资助:
    “十三五”国家重点研发计划资助项目(2016YFC0800706);上海市法医学重点实验室资助项目(17DZ2273200);上海市司法鉴定专业技术服务平台资助项目(16DZ2290900)

Determination of Oleandrin in Blood and Liver Samples by LC-MS/MS

ZHAI Jin-xiao1,2, YAN Hui1, SHEN Min1, SHEN Bao-hua1, LIU Wei1   

  1. 1. Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China; 2. Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, Shandong Province, China
  • Online:2018-12-25 Published:2018-12-28

摘要: 目的 建立血液和肝组织中欧夹竹桃苷的液相色谱-串联质谱法(liquid chromatography-tandem mass spectrometry,LC-MS/MS),并应用于夹竹桃中毒致死案例中。 方法 采用乙醚对血液或肝组织进行液液提取,提取物经Agilent ZORBAX SB-C18柱分离,以乙腈和20 mmol/L乙酸铵(含0.1%甲酸)溶液进行梯度洗脱,采用电喷雾正离子化(electrospray positive ionization,ESI+)、多反应监测模式检测欧夹竹桃苷。 结果 血液和肝组织中欧夹竹桃苷在相应的线性范围内线性良好(r>0.995 0),检出限分别为1 ng/mL和2 ng/g,提取回收率均大于70.50%,日内和日间精密度均小于10.71%,准确度为98.42%~111.63%,基质效应为91.52%~106.39%。该方法成功应用于1例疑似夹竹桃中毒致死案例,在尸体心血、尿液、肝组织、胆汁、胃壁组织和胃内容物中均检出欧夹竹桃苷,其含量范围为65.5~29 600.0 ng/mL(ng/g)。 结论 本研究建立的方法操作简便、选择性好,适用于血液、肝组织等生物检材中的欧夹竹桃苷分析,可为夹竹桃中毒的法医学鉴定和临床诊治提供技术保障。

关键词: 法医毒理学, 中毒, 血液, 肝, 液相色谱-串联质谱法, 欧夹竹桃苷

Abstract: Objective To develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytical method for the determination of oleandrin in blood and liver tissues, which could be applied to the cases of death caused by oleander poisoning. Methods Blood or liver tissues underwent a liquid-liquid extraction (LLE) using ethyl acetate, and the extract was separated on an Agilent ZORBAX SB-C18 column and eluted with a gradient of acetonitrile and 20 mmol/L ammonium acetate (containing 0.1% formic acid). Oleandrin was detected using electrospray positive ionization (ESI+) with multiple-reaction monitoring (MRM) mode. Results Oleandrin showed excellent linearity in both blood and liver samples in the corresponding linear range (r>0.995 0), with detection limits 1 ng/mL and 2 ng/g, respectively, extraction recovery rates greater than 70.50%, both intra- and inter-day precisions less than 10.71%, accuracies 98.42%-111.63%, and matrix effects 91.52%-106.39%. The method was successfully applied to a case of suspected oleander poisoning. Oleandrin was detected in the blood, urine, liver tissues, bile, stomach wall tissues and stomach contents of the cadaver, with the content ranging from 65.5 to 29 600.0 ng/mL (ng/g). Conclusion The method developed in this study is simple and convenient to operate with good selectivity, and is suitable for the analysis of oleandrin in biological samples such as blood and liver tissues, which can provide technical support for forensic identification and clinical diagnosis and treatment of oleander poisoning.

Key words: forensic toxicology, poisoning, blood, liver, liquid chromatography-tandem mass spectrometry, oleandrin