Journal of Forensic Medicine ›› 2022, Vol. 38 ›› Issue (5): 625-639.DOI: 10.12116/j.issn.1004-5619.2022.520303
• Review • Previous Articles Next Articles
Fan-zhang LEI1(), Man CHEN1, Shu-yan MEI1, Ya-ting FANG1,2, Bo-feng ZHU1()
Received:
2022-03-18
Online:
2022-10-25
Published:
2022-10-28
Contact:
Bo-feng ZHU
CLC Number:
Fan-zhang LEI, Man CHEN, Shu-yan MEI, Ya-ting FANG, Bo-feng ZHU. New Advances, Challenges and Opportunities in Forensic Applications of Microbiomics[J]. Journal of Forensic Medicine, 2022, 38(5): 625-639.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2022.520303
研究应用领域 | 分析或测序方法 | 物种分类方法 | 机器学习模型1) | 参考文献 |
---|---|---|---|---|
同一认定 | 16S rDNA V4区测序 | ASV | 随机森林 | [ |
hidSkinPlex靶向测序 | - | 支持向量机/LASSO算法 | [ | |
组织或体液来源鉴定 | 16S rDNA V3~V4/V1~V9区测序 | OTU | 线性判别分析 | [ |
16S rDNA V1~V5区 | ASV | 人工神经网络 | [ | |
宏基因组鸟枪法 | OTU | - | [ | |
地域特征鉴识 | 16S rDNA V3~V4区测序 | OTU | 随机森林 | [ |
宏基因组鸟枪法 | OTU | 支持向量机 | [ | |
PMI推断 | 16S rDNA V3~V4区测序 | OTU | 人工神经网络 | [ |
16S rDNA V4区和18S rDNA测序 | ASV | 随机森林 | [ | |
飞行时间质谱(MALDI-TOF) | OTU | - | [ | |
PMSI推断 | 16S rDNA V4区测序 | OTU | 随机森林 | [ |
16S rDNA V4区和 ITS rDNA测序 | ASV | 随机森林 | [ | |
死亡原因和(或) 死亡方式推测 | 16S rDNA V3~V4区测序 | OTU | - | [ |
16S rDNA V4区测序 | ASV | logistic回归 | [ |
Tab. 1 Analytical techniques in major application fields of forensic microbiomics
研究应用领域 | 分析或测序方法 | 物种分类方法 | 机器学习模型1) | 参考文献 |
---|---|---|---|---|
同一认定 | 16S rDNA V4区测序 | ASV | 随机森林 | [ |
hidSkinPlex靶向测序 | - | 支持向量机/LASSO算法 | [ | |
组织或体液来源鉴定 | 16S rDNA V3~V4/V1~V9区测序 | OTU | 线性判别分析 | [ |
16S rDNA V1~V5区 | ASV | 人工神经网络 | [ | |
宏基因组鸟枪法 | OTU | - | [ | |
地域特征鉴识 | 16S rDNA V3~V4区测序 | OTU | 随机森林 | [ |
宏基因组鸟枪法 | OTU | 支持向量机 | [ | |
PMI推断 | 16S rDNA V3~V4区测序 | OTU | 人工神经网络 | [ |
16S rDNA V4区和18S rDNA测序 | ASV | 随机森林 | [ | |
飞行时间质谱(MALDI-TOF) | OTU | - | [ | |
PMSI推断 | 16S rDNA V4区测序 | OTU | 随机森林 | [ |
16S rDNA V4区和 ITS rDNA测序 | ASV | 随机森林 | [ | |
死亡原因和(或) 死亡方式推测 | 16S rDNA V3~V4区测序 | OTU | - | [ |
16S rDNA V4区测序 | ASV | logistic回归 | [ |
1 | BERG G, RYBAKOVA D, FISCHER D, et al. Microbiome definition re-visited: Old concepts and new challenges[J]. Microbiome,2020,8(1):103. doi:10.1186/s40168-020-00875-0 . |
2 | CAPORASO J G, KUCZYNSKI J, STOMBAU-GH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods,2010,7(5):335-336. doi:10.1038/nmeth.f.303 . |
3 | BURGE M N. Fungi in biological control systems[M]. Manchester:Manchester University Press,1988:161-187. |
4 | WHITESIDE S A, RAZVI H, DAVE S, et al. The microbiome of the urinary tract -- A role beyond infection[J]. Nat Rev Urol,2015,12(2):81-90. doi:10.1038/nrurol.2014.361 . |
5 | KNIGHT R, VRBANAC A, TAYLOR B C, et al. Best practices for analysing microbiomes[J]. Nat Rev Microbiol,2018,16(7):410-422. doi:10.1038/s41579-018-0029-9 . |
6 | STACKEBRANDT E, GOEBEL B M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. Int J Syst Evol Microbiol,1994,44(4):846-849. doi:10.1099/00207713-44-4-846 . |
7 | EDGAR R C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs[J]. Bioinformatics,2018,34(14):2371-2375. doi:10.1093/bioinformatics/bty113 . |
8 | SCHLOSS P D. Amplicon sequence variants artificially split bacterial genomes into separate clusters[J]. mSphere,2021,6(4):e0019121. doi:10.1128/msphere. 00191-21 . |
9 | CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nat Methods,2016,13(7):581-583. doi:10.1038/nmeth.3869 . |
10 | THOMPSON L R, SANDERS J G, MCDONALD D, et al. A communal catalogue reveals Earth’s multiscale microbial diversity[J]. Nature,2017,551(7681):457-463. doi:10.1038/nature24621 . |
11 | AßHAUER K P, WEMHEUER B, DANIEL R, et al. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics,2015,31(17):2882-2884. doi:10.1093/bioinformatics/btv287 . |
12 | WALTERS W A, CAPORASO J G, LAUBER C L, et al. PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers[J]. Bioinformatics,2011,27(8):1159-1161. doi:10.1093/bioinformatics/btr087 . |
13 | WALKER A W, MARTIN J C, SCOTT P, et al. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice[J]. Microbiome,2015,3:26. doi:10.1186/s40168-015-0087-4 . |
14 | HANDELSMAN J, RONDON M R, BRADY S F, et al. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products[J]. Chem Biol,1998,5(10):R245-R249. doi:10.1016/S1074-5521(98)90108-9 . |
15 | SCHOLZ M, WARD D V, PASOLLI E, et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics[J]. Nat Methods,2016,13(5):435-438. doi:10.1038/nmeth.3802 . |
16 | MAURICE C F, HAISER H J, TURNBAUGH P J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome[J]. Cell,2013,152(1/2):39-50. doi:10.1016/j.cell.2012. 10.052 . |
17 | FRANZOSA E A, MORGAN X C, SEGATA N, et al. Relating the metatranscriptome and metagenome of the human gut[J]. PNAS,2014,111(22):E2329-E2338. doi:10.1073/pnas.1319284111 . |
18 | BIKEL S, VALDEZ-LARA A, CORNEJO-GRANA-DOS F, et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: Towards a systems-level understanding of human microbiome[J]. Comput Struct Biotechnol J,2015,13:390-401. doi:10.1016/j.csbj.2015.06.001 . |
19 | HUNTER J D. Matplotlib: A 2D graphics environment[J]. Comput Sci Eng,2007,9(3):90-95. doi:10.1109/MCSE.2007.55 . |
20 | TOYOMANE K, YOKOTA R, WATANABE K, et al. Evaluation of CRISPR diversity in the human skin microbiome for personal identification[J]. mSystems,2021,6(1):e01255-e01220. doi:10.1128/msystems.01255-20 . |
21 | SHERIER A J, WOERNER A E, BUDOWLE B. Population informative markers selected using wright’s fixation index and machine learning improves human identification using the skin microbiome[J]. Appl Environ Microbiol,2021,87(20):e0120821. doi:10.1128/aem.01208-21 . |
22 | SHERIER A J, WOERNER A E, BUDOWLE B. Determining informative microbial single nucleotide polymorphisms for human identification[J]. Appl Environ Microbiol,2022,88(7):e0005222. doi:10.1128/aem.00052-22 . |
23 | MEI S Y, ZHAO M, LIU Y F, et al. Evaluations and comparisons of microbial diversities in four types of body fluids based on two 16S rRNA gene sequencing methods[J]. Forensic Sci Int,2022,331:111128. doi:10.1016/j.forsciint.2021.111128 . |
24 | DÍEZ LÓPEZ C, MONTIEL GONZÁLEZ D, HAAS C, et al. Microbiome-based body site of origin classification of forensically relevant blood traces[J]. Forensic Sci Int Genet,2020,47:102280. doi:10.1016/j.fsigen.2020.102280 . |
25 | GHEMRAWI M, TORRES A R, DUNCAN G, et al. The genital microbiome and its potential for detecting sexual assault[J]. Forensic Sci Int Genet,2021,51:102432. doi:10.1016/j.fsigen.2020.102432 . |
26 | YAO T, WANG Z, LIANG X, et al. Signatures of vaginal microbiota by 16S rRNA gene: Potential bio-geographical application in Chinese Han from three regions of China[J]. Int J Legal Med,2021,135(4):1213-1224. doi:10.1007/s00414-021-02525-y . |
27 | ZHANG R, WALKER A R, DATTA S. Unraveling city-specific signature and identifying sample origin locations for the data from CAMDA MetaSUB challenge[J]. Biol Direct,2021,16(1):1. doi:10.1186/s13062-020-00284-1 . |
28 | ZHANG J, WANG M C, QI X Q, et al. Predicting the postmortem interval of burial cadavers based on microbial community succession[J]. Forensic Sci Int Genet,2021,52:102488. doi:10.1016/j.fsigen.2021. 102488 . |
29 | DEEL H, EMMONS A L, KIELY J, et al. A pilot study of microbial succession in human rib skeletal remains during terrestrial decomposition[J]. mSphere,2021,6(4):e0045521. doi:10.1128/msphere.00455-21 . |
30 | DELL’ANNUNZIATA F, MARTORA F, PEPA M E D, et al. Postmortem interval assessment by MALDI-TOF mass spectrometry analysis in murine cadavers[J]. J Appl Microbiol,2022,132(1):707-714. doi:10.1111/jam.15210 . |
31 | CARTOZZO C, SIMMONS T, SWALL J, et al. Postmortem submersion interval (PMSI) estimation from the microbiome of Sus scrofa bone in a freshwater river[J]. Forensic Sci Int,2021,318:110480. doi:10.1016/j.forsciint.2020.110480 . |
32 | KASZUBINSKI S F, RECEVEUR J P, NESTLE E D, et al. Microbial community succession of submerged bones in an aquatic habitat[J]. J Forensic Sci,2022,67(4):1565-1578. doi:10.1111/1556-4029.15036 . |
33 | WANG L L, ZHANG F Y, DONG W W, et al. A novel approach for the forensic diagnosis of drowning by microbiological analysis with next-generation sequencing and unweighted UniFrac-based PCoA[J]. Int J Legal Med,2020,134(6):2149-2159. doi:10.1007/s00414-020-02358-1 . |
34 | KASZUBINSKI S F, PECHAL J L, SMILES K, et al. Dysbiosis in the dead: Human postmortem microbiome beta-dispersion as an indicator of manner and cause of death[J]. Front Microbiol,2020,11:555347. doi:10.3389/fmicb.2020.555347 . |
35 | RIDAURA V K, FAITH J J, REY F E, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science,2013,341(6150):1241214. doi:10.1126/science.1241214 . |
36 | DAVID L A, MATERNA A C, FRIEDMAN J, et al. Host lifestyle affects human microbiota on daily timescales[J]. Genome Biol,2014,15(7): R89. doi:10.1186/gb-2014-15-7-r89 . |
37 | WILKINS D, TONG X, LEUNG M H Y, et al. Diurnal variation in the human skin microbiome affects accuracy of forensic microbiome matching[J]. Microbiome,2021,9(1):129. doi:10.1186/s40168-021-01082-1 . |
38 | GILBERT J A, BLASER M J, CAPORASO J G, et al. Current understanding of the human microbiome[J]. Nat Med,2018,24(4):392-400. doi:10.1038/nm.4517 . |
39 | COSTELLO E K, LAUBER C L, HAMADY M, et al. Bacterial community variation in human body habitats across space and time[J]. Science,2009,326(5960):1694-1697. doi:10.1126/science. 1177486 . |
40 | OH J, BYRD A L, PARK M, et al. Temporal stability of the human skin microbiome[J]. Cell,2016,165(4):854-866. doi:10.1016/j.cell.2016.04.008 . |
41 | SCHMEDES S E, WOERNER A E, BUDOWLE B. Forensic human identification using skin microbiomes[J]. Appl Environ Microbiol,2017,83(22):e01672-e01617. doi:10.1128/aem.01672-17 . |
42 | SCHMEDES S E, WOERNER A E, NOVROSKI N M M, et al. Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification[J]. Forensic Sci Int Genet,2018,32:50-61. doi:10.1016/j.fsigen.2017.10.004 . |
43 | WOERNER A E, NOVROSKI N M M, WENDT F R, et al. Forensic human identification with targeted microbiome markers using nearest neighbor classification[J]. Forensic Sci Int Genet,2019,38:130-139. doi:10.1016/j.fsigen.2018.10.003 . |
44 | STAHRINGER S S, CLEMENTE J C, CORLEY R P, et al. Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood[J]. Genome Res,2012,22(11):2146-2152. doi:10.1101/gr.140608.112 . |
45 | SUNDSTRÖM K, MISHRA P P, PYYSALO M J, et al. Similarity of salivary microbiome in parents and adult children[J]. PeerJ,2020,8:e8799. doi:10.7717/peerj.8799 . |
46 | BOZZA S, SCHERZ V, GREUB G, et al. A probabilistic approach to evaluate salivary microbiome in forensic science when the Defense says: It is my twin brother[J]. Forensic Sci Int Genet,2022,57:102638. doi:10.1016/j.fsigen.2021.102638 . |
47 | LEE S, YOU H, LEE S, et al. Individual identification with short tandem repeat analysis and collection of secondary information using microbiome analysis[J]. Genes (Basel),2021,13(1):85. doi:10.3390/genes13010085 . |
48 | HANSSEN E N, AVERSHINA E, RUDI K, et al. Body fluid prediction from microbial patterns for forensic application[J]. Forensic Sci Int Genet,2017,30:10-17. doi:10.1016/j.fsigen.2017.05.009 . |
49 | TACKMANN J, ARORA N, SCHMIDT T S B, et al. Ecologically informed microbial biomarkers and accurate classification of mixed and unmixed samples in an extensive cross-study of human body sites[J]. Microbiome,2018,6(1):192. doi:10.1186/s40168-018-0565-6 . |
50 | DOBAY A, HAAS C, FUCILE G, et al. Microbiome-based body fluid identification of samples exposed to indoor conditions[J]. Forensic Sci Int Genet,2019,40:105-113. doi:10.1016/j.fsigen.2019.02.010 . |
51 | YAO T, HAN X, GUAN T, et al. Exploration of the microbiome community for saliva, skin, and a mixture of both from a population living in Guangdong[J]. Int J Legal Med,2021,135(1):53-62. doi:10.1007/s00414-020-02329-6 . |
52 | QUAAK F C A. Microbial populations and their potential in forensic investigations[D]. Amsterdam: University of Amsterdam,2018. |
53 | WILLIAMS D W, GIBSON G. Classification of individuals and the potential to detect sexual contact using the microbiome of the pubic region[J]. Forensic Sci Int Genet,2019,41:177-187. doi:10.1016/j.fsigen.2019.05.004 . |
54 | NAGASAWA S, MOTANI-SAITOH H, INOUE H, et al. Geographic diversity of Helicobacter pylori in cadavers: Forensic estimation of geographical origin[J]. Forensic Sci Int,2013,229(1/2/3):7-12. doi:10.1016/j.forsciint.2013.02.028 . |
55 | LI J, QUINQUE D, HORZ H P, et al. Comparative analysis of the human saliva microbiome from different climate zones: Alaska, Germany, and Africa[J]. BMC Microbiol,2014,14:316. doi:10.1186/s12866-014-0316-1 . |
56 | ESCOBAR J S, KLOTZ B, VALDES B E, et al. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians[J]. BMC Microbiol,2014,14:311. doi:10.1186/s12866-014-0311-6 . |
57 | BRINKAC L, CLARKE T H, SINGH H, et al. Spatial and environmental variation of the human hair microbiota[J]. Sci Rep,2018,8:9017. doi:10.1038/s41598-018-27100-1 . |
58 | NECKOVIC A, VAN OORSCHOT R A H, SZKUTA B, et al. Investigation of direct and indirect transfer of microbiomes between individuals[J]. Forensic Sci Int Genet,2020,45:102212. doi:10.1016/j.fsigen.2019.102212 . |
59 | KODAMA W A, XU Z J, METCALF J L, et al. Trace evidence potential in postmortem skin microbiomes: From death scene to morgue[J]. J Forensic Sci,2019,64(3):791-798. doi:10.1111/1556-4029.13949 . |
60 | HUANG C B, ALIMOVA Y, MYERS T M, et al. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms[J]. Arch Oral Biol,2011,56(7):650-654. doi:10.1016/j.archoralbio.2011.01.011 . |
61 | DE FILIPPIS F, VANNINI L, LA STORIA A, et al. The same microbiota and a potentially discriminant metabolome in the saliva of omnivore, ovo-lacto-vegetarian and Vegan individuals[J]. PLoS One,2014,9(11):e112373. doi:10.1371/journal.pone.0112373 . |
62 | WANG S, SONG F, GU H, et al. Assess the diversity of gut microbiota among healthy adults for forensic application[J]. Microb Cell Fact,2022,21(1):46. doi:10.1186/s12934-022-01769-6 . |
63 | YU G, PHILLIPS S, GAIL M H, et al. The effect of cigarette smoking on the oral and nasal microbiota[J]. Microbiome,2017,5(1):3. doi:10.1186/s40168-016-0226-6 . |
64 | AL-ZYOUD W, HAJJO R, ABU-SINIYEH A, et al. Salivary microbiome and cigarette smoking: A first of its kind investigation in Jordan[J]. Int J Environ Res Public Health,2019,17(1): E256. doi:10.3390/ijerph17010256 . |
65 | COOK M D, ALLEN J M, PENCE B D, et al. Exercise and gut immune function: Evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training[J]. Immunol Cell Biol,2016,94(2):158-163. doi:10.1038/icb.2015.108 . |
66 | BENEDICT C, VOGEL H, JONAS W, et al. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals[J]. Mol Metab,2016,5(12):1175-1186. doi:10.1016/j.molmet.2016.10.003 . |
67 | SONG S J, LAUBER C, COSTELLO E K, et al. Cohabiting family members share microbiota with one another and with their dogs[J]. Elife,2013,2:e00458. doi:10.7554/elife.00458 . |
68 | LAX S, HAMPTON-MARCELL J T, GIBBONS S M, et al. Forensic analysis of the microbiome of phones and shoes[J]. Microbiome,2015,3:21. doi:10.1186/s40168-015-0082-9 . |
69 | YING S, ZENG D N, CHI L, et al. The influence of age and gender on skin-associated microbial communities in urban and rural human populations[J]. PLoS One,2015,10(10):e0141842. doi:10.1371/journal.pone.0141842 . |
70 | DASH H R, DAS S. Thanatomicrobiome and epinecrotic community signatures for estimation of post-mortem time interval in human cadaver[J]. Appl Microbiol Biotechnol,2020,104(22):9497-9512. doi:10.1007/s00253-020-10922-3 . |
71 | PROSKURYAKOV S Y A, KONOPLYANNIKOV A G, GABAI V L. Necrosis: A specific form of programmed cell death?[J]. Exp Cell Res,2003,283(1):1-16. doi:10.1016/S0014-4827(02)00027-7 . |
72 | BENBOW M E, LEWIS A J, TOMBERLIN J K, et al. Seasonal necrophagous insect community assembly during vertebrate carrion decomposition[J]. J Med Entomol,2013,50(2):440-450. doi:10.1603/ME12194 . |
73 | PECHAL J L, CRIPPEN T L, BENBOW M E, et al. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing[J]. Int J Legal Med,2014,128(1):193-205. doi:10.1007/s00414-013-0872-1 . |
74 | CAN I, JAVAN G T, POZHITKOV A E, et al. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans[J]. J Microbiol Methods,2014,106:1-7. doi:10.1016/j.mimet.2014.07.026 . |
75 | SGUAZZI G, MICKLEBURGH H L, GHIG-NONE S, et al. Microbial DNA in human nucleic acid extracts: Recoverability of the microbiome in DNA extracts stored frozen long-term and its potential and ethical implications for forensic investigation[J]. Forensic Sci Int Genet,2022,59:102686. doi:10.1016/j.fsigen.2022.102686 . |
76 | PROCOPIO N, GHIGNONE S, VOYRON S, et al. Soil fungal communities investigated by metabarcoding within simulated forensic burial contexts[J]. Front Microbiol,2020,11:1686. doi:10.3389/fmicb.2020.01686 . |
77 | GARCÍA M G, PÉREZ-CÁRCELES M D, OSUNA E, et al. Impact of the human microbiome in forensic sciences: A systematic review[J]. Appl Environ Microbiol,2020,86(22):e01451-e01420. doi:10.1128/aem.01451-20 . |
78 | METCALF J L, WEGENER PARFREY L, GONZALEZ A, et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system[J]. Elife,2013,2:e01104. doi:10.7554/elife.01104 . |
79 | HYDE E R, HAARMANN D P, LYNNE A M, et al. The living dead: Bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition[J]. PLoS One,2013,8(10):e77733. doi:10.1371/journal.pone.0077733 . |
80 | JAVAN G T, FINLEY S J, SMITH T, et al. Cadaver thanatomicrobiome signatures: The ubiquitous nature of clostridium species in human decomposition[J]. Front Microbiol,2017,8:2096. doi:10.3389/fmicb.2017.02096 . |
81 | BURCHAM Z M, PECHAL J L, SCHMIDT C J, et al. Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model[J]. Front Microbiol,2019,10:745. doi:10.3389/fmicb.2019.00745 . |
82 | JUNKINS E N, SPECK M, CARTER D O. The microbiology, pH, and oxidation reduction potential of larval masses in decomposing carcasses on Oahu, Hawaii[J]. J Forensic Leg Med,2019,67:37-48. doi:10.1016/j.jflm.2019.08.001 . |
83 | LUTZ H, VANGELATOS A, GOTTEL N, et al. Effects of extended postmortem interval on microbial communities in organs of the human cadaver[J]. Front Microbiol,2020,11:569630. doi:10.3389/fmicb.2020.569630 . |
84 | HU L, XING Y, JIANG P, et al. Predicting the postmortem interval using human intestinal microbiome data and random forest algorithm[J]. Sci Justice,2021,61(5):516-527. doi:10.1016/j.scijus.2021.06.006 . |
85 | LIU R N, WANG Q, ZHANG K, et al. Analysis of postmortem intestinal microbiota successional patterns with application in postmortem interval estimation[J]. Microb Ecol,2021:1-16. doi:10.1007/s00248-021-01923-4 . |
86 | FU X L, GUO J J, FINKELBERGS D, et al. Fungal succession during mammalian cadaver decomposition and potential forensic implications[J]. Sci Rep,2019,9:12907. doi:10.1038/s41598-019-49361-0 . |
87 | 朱伟豪, 杨梦姿, 郑哲, 等. 累积日度在死亡时间推断中的研究进展[J].法医学杂志,2021,37(3):396-401,411. doi:10.12116/j.issn.1004-5619.2020.400407 . |
ZHU W H, YANG M Z, ZHENG Z, et al. Research progress on accumulated degree days for PMI estimation[J]. Fayixue Zazhi,2021,37(3):396-401,411. | |
88 | DICKSON G C, POULTER R T M, MAAS E W, et al. Marine bacterial succession as a potential indicator of postmortem submersion interval[J]. Forensic Sci Int,2011,209(1/2/3):1-10. doi:10.1016/j.forsciint.2010.10.016 . |
89 | BENBOW M E, PECHAL J L, LANG J M, et al. The potential of high-throughput metagenomic sequencing of aquatic bacterial communities to estimate the postmortem submersion interval[J]. J Forensic Sci,2015,60(6):1500-1510. doi:10.1111/1556-4029.12859 . |
90 | ZANEVELD J R, MCMINDS R, VEGA THURBER R. Stress and stability: Applying the Anna Karenina principle to animal microbiomes[J]. Nat Microbiol,2017,2:17121. doi:10.1038/nmicrobiol. 2017.121 . |
91 | 杨晓霞, 阙国鹰. 16S核糖体RNA基因测序技术在口腔微生物多样性中的研究进展[J].中南大学学报(医学版),2020,45(7):849-855. doi:10.11817/j.issn.1672-7347.2020.190236 . |
YANG X X, QUE G Y. Advance in study on 16S rRNA gene sequencing technology in oral microbial diversity[J]. Zhongnan Daxue Xuebao (Medical sciences),2020,45(7):849-855. | |
92 | NASERIBAFROUEI A, HESTAD K, AVER-SHINA E, et al. Correlation between the human fecal microbiota and depression[J]. Neurogastroenterol Motil,2014,26(8):1155-1162. doi:10.1111/nmo.12378 . |
93 | ZHANG Y, PECHAL J L, SCHMIDT C J, et al. Machine learning performance in a microbial molecular autopsy context: A cross-sectional postmortem human population study[J]. PLoS One,2019,14(4):e0213829. doi:10.1371/journal.pone.0213829 . |
94 | PRAVEEN V, PRAVEEN S. Microbiome-gut-brain axis: A pathway for improving brainstem serotonin homeostasis and successful autoresuscitation in SIDS-A novel hypothesis[J]. Front Pediatr,2016,4:136. doi:10.3389/fped.2016.00136 . |
95 | HIGHET A R, BERRY A M, BETTELHEIM K A, et al. Gut microbiome in sudden infant death syndrome (SIDS) differs from that in healthy comparison babies and offers an explanation for the risk factor of prone position[J]. Int J Med Microbiol,2014,304(5/6):735-741. doi:10.1016/j.ijmm.2014.05.007 . |
96 | 刘文丽, 程凤, 钱嘉林, 等. 基于土壤宏基因组分析的法医学个体来源地理位置推断[J].法医学杂志,2021,37(3):366-371,377. doi:10.12116/j.issn.1004-5619.2019.590502 . |
LIU W L, CHENG F, QIAN J L, et al. Geolocation inference of forensic individual origin by soil metagenomic analysis[J]. Fayixue Zazhi,2021,37(3):366-371,377. | |
97 | MARTINY J B, EISEN J A, PENN K, et al. Drivers of bacterial beta-diversity depend on spatial scale[J]. PNAS,2011,108(19):7850-7854. doi:10.1073/pnas.1016308108 . |
98 | JESMOK E M, HOPKINS J M, FORAN D R. Next-generation sequencing of the bacterial 16S rRNA gene for forensic soil comparison: A feasibility study[J]. J Forensic Sci,2016,61(3):607-617. doi:10.1111/1556-4029.13049 . |
99 | KARADAYı S. Assessment of the link between evidence and crime scene through soil bacterial and fungal microbiome: A mock case in forensic study[J]. Forensic Sci Int,2021,329:111060. doi:10.1016/j.forsciint.2021.111060 . |
100 | LANG J M, ERB R, PECHAL J L, et al. Microbial biofilm community variation in flowing habitats: Potential utility as bioindicators of postmortem submersion intervals[J]. Microorganisms,2016,4(1):1. doi:10.3390/microorganisms4010001 . |
101 | UCHIYAMA T, KAKIZAKI E, KOZAWA S, et al. A new molecular approach to help conclude drowning as a cause of death: Simultaneous detection of eight bacterioplankton species using real-time PCR assays with TaqMan probes[J]. Forensic Sci Int,2012,222(1/2/3):11-26. doi:10.1016/j.forsciint.2012.04.029 . |
102 | RUTTY G N, BRADLEY C J, BIGGS M J P, et al. Detection of bacterioplankton using PCR probes as a diagnostic indicator for drowning; the Leicester experience[J]. Leg Med,2015,17(5):401-408. doi:10.1016/j.legalmed.2015.06.001 . |
103 | DANKO D, BEZDAN D, AFSHIN E E, et al. A global metagenomic map of urban microbiomes and antimicrobial resistance[J]. Cell,2021,184(13):3376-3393.e17. doi:10.1016/j.cell.2021.05.002 . |
104 | HUANG L, XU C, YANG W, et al. A machine learning framework to determine geolocations from metagenomic profiling[J]. Biol Direct,2020,15(1):27. doi:10.1186/s13062-020-00278-z . |
105 | EISENHOFER R, MINICH J J, MAROTZ C, et al. Contamination in low microbial biomass microbiome studies: Issues and recommendations[J]. Trends Microbiol,2019,27(2):105-117. doi:10.1016/j.tim.2018.11.003 . |
106 | CARLSEN T, AAS A B, LINDNER D, et al. Don’t make a mista(g)ke: Is tag switching an overlooked source of error in amplicon pyrosequencing studies?[J]. Fungal Ecol,2012,5(6):747-749. doi:10.1016/j.funeco.2012.06.003 . |
107 | LARSSON A J M, STANLEY G, SINHA R, et al. Computational correction of index switching in multiplexed sequencing libraries[J]. Nat Methods,2018,15(5):305-307. doi:10.1038/nmeth.4666 . |
108 | SUN Z, HUANG S, ZHANG M, et al. Challenges in benchmarking metagenomic profilers[J]. Nat Methods,2021,18(6):618-626. doi:10.1038/s41592-021-01141-3 . |
109 | GHANNAM R B, TECHTMANN S M. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring[J]. Comput Struct Biotechnol J,2021,19:1092-1107. doi:10.1016/j.csbj.2021.01.028 . |
110 | VANGAY P, BURGIN J, JOHNSTON A, et al. Microbiome metadata standards: Report of the national microbiome data collaborative’s workshop and follow-on activities[J]. mSystems,2021,6(1):e01194-e01120. doi:10.1128/msystems.01194-20 . |
111 | MAESTRE J P, JENNINGS W, WYLIE D, et al. Filter forensics: Microbiota recovery from residential HVAC filters[J]. Microbiome,2018,6(1):22. doi:10.1186/s40168-018-0407-6 . |
112 | GOHLI J, BØIFOT K O, MOEN L V, et al. The subway microbiome: Seasonal dynamics and direct comparison of air and surface bacterial communities[J]. Microbiome,2019,7(1):160. doi:10.1186/s40168-019-0772-9 . |
113 | LEUNG M H Y, TONG X, BØIFOT K O, et al. Characterization of the public transit air microbiome and resistome reveals geographical specificity[J]. Microbiome,2021,9(1):112. doi:10.1186/s40168-021-01044-7 . |
114 | ELHAIK E, AHSANUDDIN S, ROBINSON J M, et al. The impact of cross-kingdom molecular forensics on genetic privacy[J]. Microbiome,2021,9(1):114. doi:10.1186/s40168-021-01076-z . |
115 | 许亚昆, 马越, 胡小茜, 等. 基于三代测序技术的微生物组学研究进展[J].生物多样性,2019,27(5):534-542. doi:10.17520/biods.2018201 . |
XU Y K, MA Y, HU X X, et al. Analysis of prospective microbiology research using third-generation sequencing technology[J]. Shengwu Duoyangxing,2019,27(5):534-542. | |
116 | DÍEZ LÓPEZ C, VIDAKI A, KAYSER M. Integrating the human microbiome in the forensic toolkit: Current bottlenecks and future solutions[J]. Forensic Sci Int Genet,2022,56:102627. doi:10.1016/j.fsigen.2021.102627 . |
117 | TURNBAUGH P J, LEY R E, HAMADY M, et al. The human microbiome project[J]. Nature,2007,449(7164):804-810. doi:10.1038/nature06244 . |
[1] | Wen LI, Hao-zhe LI, Chen CHEN, Wei-xiong CAI. Research Progress and Application Prospect of Facial Micro-Expression Analysis in Forensic Psychiatry [J]. Journal of Forensic Medicine, 2023, 39(5): 493-500. |
[2] | Zhong-hua WANG, Shu-jin LI. Research Progress on Molecular Biology of Human Height Estimation [J]. Journal of Forensic Medicine, 2023, 39(5): 487-492. |
[3] | Lu CHEN, Zhe ZHOU, Sheng-qi WANG. Process of Forensic Medicine in DNA Identification of Aged Human Remains [J]. Journal of Forensic Medicine, 2023, 39(5): 478-486. |
[4] | Yong ZENG, Dong-hua ZOU, Ying FAN, Qing XU, Lu-yang TAO, Yi-jiu CHEN, Zheng-dong LI. Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics [J]. Journal of Forensic Medicine, 2023, 39(5): 471-477. |
[5] | Hong-xia HAO, Jie-min CHEN, Rong-rong WANG, Xiao-ying YU, Meng WANG, Zhi-lu ZHOU, Yan-liang SHENG, Wen-tao XIA. The Value of VR-PVEP in Objective Evaluation of Monocular Refractive Visual Impairment [J]. Journal of Forensic Medicine, 2023, 39(4): 382-387. |
[6] | Jie BAI, Jing SUN, Xiao-guang CHENG, Fan LIU, Hua LIU, Xu WANG. Construction and Application of Rib Fracture Diagnosis Model Based on YOLOv3 Algorithm [J]. Journal of Forensic Medicine, 2023, 39(4): 343-349. |
[7] | Fei FAN, Juan WU, Zhen-hua DENG. Application Progress of Objective Audiological Detection Techniques in Forensic Clinical Medicine [J]. Journal of Forensic Medicine, 2023, 39(4): 360-366. |
[8] | Jian XIANG, Xu WANG, Li-li YU, Kang-jia JIN, Ying-kai YANG. Objective Assessment of Visual Field Defects Caused by Optic Chiasm and Its Posterior Visual Pathway Injury [J]. Journal of Forensic Medicine, 2023, 39(4): 350-359. |
[9] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[10] | Zhang-ming GAO, Jing-yu SHI, Hao ZENG, Xue-jun ZHANG. Rapid Determination of Bucinnazine in Blood by UPLC-MS/MS [J]. Journal of Forensic Medicine, 2023, 39(4): 388-392. |
[11] | Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs [J]. Journal of Forensic Medicine, 2023, 39(4): 406-416. |
[12] | Xu WANG. Legal Theories, Disability Models and Principles of Disability Assessment [J]. Journal of Forensic Medicine, 2023, 39(4): 329-336. |
[13] | Ran LI, Hong-yu SUN. Methods and Research Hotspots of Forensic Kinship Testing [J]. Journal of Forensic Medicine, 2023, 39(3): 231-239. |
[14] | Xiao-yan MA, Hong-yu SUN, Qing LI. Research Progresses of Tri-Allelic Patterns in Autosomal STR in Forensic DNA Analysis [J]. Journal of Forensic Medicine, 2023, 39(3): 240-246. |
[15] | Hao-yang WANG, Jian WU, Qian ZHANG, Xin-feng MIN, Xiu-yan LIU, Yin-long GUO. Structural Analysis and Characterization of 4-F-α-PVP Analog 4-F-3-Methyl-α- PVP Hydrochloride [J]. Journal of Forensic Medicine, 2023, 39(2): 144-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||