Journal of Forensic Medicine ›› 2023, Vol. 39 ›› Issue (4): 406-416.DOI: 10.12116/j.issn.1004-5619.2022.320402
• Review • Previous Articles Next Articles
Yu-qi CAO1(), Yan SHI2, Ping XIANG2(
), Yin-long GUO1(
)
Received:
2022-04-15
Online:
2023-10-10
Published:
2023-08-25
Contact:
Ping XIANG,Yin-long GUO
CLC Number:
Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs[J]. Journal of Forensic Medicine, 2023, 39(4): 406-416.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2022.320402
1 | STANLEY T H. The history and development of the fentanyl series[J]. J Pain Symptom Manag,1992,7(S3):S3-S7. doi:10.1016/0885-3924(92)90047-l . |
2 | KUCZYŃSKA K, GRZONKOWSKI P, KACPRZAK Ł, et al. Abuse of fentanyl: An emerging problem to face[J]. Forensic Sci Int,2018,289:207-214. doi:10.1016/j.forsciint.2018.05.042 . |
3 | O’DONNELL J, GLADDEN R M, GOLDBERGER B A, et al. Notes from the field: Opioid-involved overdose deaths with fentanyl or fentanyl analogs detected - 28 states and the district of Columbia, July 2016 - december 2018[J]. MMWR Morb Mortal Wkly Rep,2020,69(10):271-273. doi:10.15585/mmwr.mm6910a4 . |
4 | ROTHBERG R L, STITH K. Fentanyl: A whole new world?[J]. J Law Med Ethics,2018,46(2):314-324. doi:10.1177/1073110518782937 . |
5 | ARMENIAN P, VO K T, BARR-WALKER J, et al. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review[J]. Neuropharmacology,2018,134(Pt A):121-132. doi:10.1016/j.neu ropharm.2017.10.016 . |
6 | GILBERT N, MEWIS R E, SUTCLIFFE O B. Fast & fluorinated - Development and validation of a rapid benchtop NMR approach and other routine screening methods for the detection and quantification of synthesized fluorofentanyl derivatives[J]. Forensic Chem,2021,23(7):100321. doi:10.1016/j.forc.2021.100321 . |
7 | SMITH B C. Fundamentals of Fourier transform infrared spectroscopy[M]. Boca Raton, Florida: CRC Press,2011:1-2. |
8 | STEIN S E, SCOTT D R. Optimization and testing of mass spectral library search algorithms for compound identification[J]. J Am Soc Mass Spectrom,1994,5(9):859-866. doi:10.1016/1044-0305(94)87009-8 . |
9 | REITZEL L A, DALSGAARD P W, MÜLLER I B, et al. Identification of ten new designer drugs by GC-MS, UPLC-QTOF-MS, and NMR as part of a police investigation of a Danish internet company[J]. Drug Test Anal,2012,4(5):342-354. doi:10 . |
1002/dta.358. | |
10 | JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science,2015,349(6245):255-260. doi:10.1126/science.aaa8415 . |
11 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM,2017,60(6):84-90. doi:10.1145/3065386 . |
12 | ZHANG L, VICENTE GONÇALVES C M, DAI L, et al. Exploring metabolic syndrome serum profiling based on gas chromatography mass spectrome-try and random forest models[J]. Anal Chim Acta,2014,827:22-27. doi:10.1016/j.aca.2014.04.008 . |
13 | LIEBAL U W, PHAN A N T, SUDHAKAR M, et al. Machine learning applications for mass spectrome-try-based metabolomics[J]. Metabolites,2020,10(6):243. doi:10.3390/metabo10060243 . |
14 | ZHOU Z P, ZARE R N. Personal information from latent fingerprints using desorption electrospray ioni-zation mass spectrometry and machine learning[J]. Anal Chem,2017,89(2):1369-1372. doi:10.1021/acs. analchem.6b04498 . |
15 | KASPERKIEWICZ A, PAWLISZYN J. Multiresidue pesticide quantitation in multiple fruit matrices via automated coated blade spray and liquid chromato-graphy coupled to triple quadrupole mass spectrome-try[J]. Food Chem,2021,339:127815. doi:10.1016/j.foodchem.2020.127815 . |
16 | ALLEN D R, MCWHINNEY B C. Quadrupole time-of-flight mass spectrometry: A paradigm shift in toxicology screening applications[J]. Clin Biochem Rev,2019,40(3):135-146. doi:10.33176/AACB-19-00023 . |
17 | HE Z, WANG Y, XU Y, et al. Determination of antibiotics in vegetables using QuEChERS-based method and liquid chromatography-quadrupole linear ion trap mass spectrometry[J]. Food Anal Methods,2018,11(10):2857-2864. doi:10.1007/s12161-018-1252-8 . |
18 | BROWN H M, MCDANIEL T J, FEDICK P W, et al. The current role of mass spectrometry in forensics and future prospects[J]. Anal Methods,2020,12(32):3974-3997. doi:10.1039/d0ay01113d . |
19 | CHIU H H, KUO C H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples[J]. J Food Drug Anal,2020,28(1):60-73. doi:10.1016/j.jfda.2019.10.003 . |
20 | MALACA S, BUSARDÒ F P, GOTTARDI M, et al. Dilute and shoot ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis of psychoactive drugs in oral fluid[J]. J Pharm Biomed Anal,2019,170:63-67. doi:10.1016/ |
j.jpba.2019.02.039. | |
21 | ZHANG F, GE W, RUAN G, et al. Data-indepen-dent acquisition mass spectrometry-based proteomics and software tools: A glimpse in 2020[J]. Proteomics,2020,20(17/18):e1900276. doi:10.1002/pmic.201900276 . |
22 | HELANDER A, BÄCKBERG M, SIGNELL P, et al. Intoxications involving acrylfentanyl and other novel designer fentanyls - results from the Swedish STRIDA project[J]. Clin Toxicol (Phila),2017,55(6):589-599. doi:10.1080/15563650.2017.1303141 . |
23 | MOORTHY A S, KEARSLEY A J, MALLARD W G, et al. Mass spectral similarity mapping applied to fentanyl analogs[J]. Forensic Chem,2020,19:100237. doi:10.1016/j.forc.2020.100237 . |
24 | QIN N, WU H, XIANG P, et al. Investigation of fragmentation pathways of fentanyl analogues and novel synthetic opioids by electron ionization high-resolution mass spectrometry and electrospray ioni-zation high-resolution tandem mass spectrometry[J]. J Am Soc Mass Spectrom,2020,31(2):277-291. doi:10.1021/jasms.9b00112 . |
25 | USAMA M, QADIR J, RAZA A, et al. Unsupervised machine learning for networking: Techniques, applications and research challenges[J]. IEEE Access,2019,7:65579-65615. doi:10.1109/ACCESS.2019.2916648 . |
26 | MAULUD D, ABDULAZEEZ A M. A review on linear regression comprehensive in machine learning[J]. J Appl Sci Technol Trends,2020,1(4):140-147. doi:10.38094/jastt1457 . |
27 | MENARD S. Six approaches to calculating standardized logistic regression coefficients[J]. Am Stat,2004,58(3):218-223. doi:10.1198/000313004X946 . |
28 | FLORESTA G, RESCIFINA A, ABBATE V. Structure-based approach for the prediction of mu-opioid binding affinity of unclassified designer fentanyl-like mole-cules[J]. Int J Mol Sci,2019,20(9):2311. doi:10.3390/ijms20092311 . |
29 | FLACH P A, LACHICHE N. Naive Bayesian classification of structured data[J]. Mach Learn,2004,57(3):233-269. doi:10.1023/B:MACH.0000039778 . |
69032.ab. | |
30 | KLINGBERG J, CAWLEY A, SHIMMON R, et al. Towards compound identification of synthetic opioids in nontargeted screening using machine learning techniques[J]. Drug Test Anal,2021,13(5):990-1000. doi:10.1002/dta.2976 . |
31 | O’SHEA K, NASH R. An introduction to convolutional neural networks[J/OL]. arXiv:1511.08458. 2015- |
12-02[2022-02-15]. . | |
32 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Commun ACM,2020,63(11):139-144. doi:10.1145/3422622 . |
33 | GARG S, TAYLOR J, SHERIEF M EL, et al. Detecting risk level in individuals misusing fentanyl utilizing posts from an online community on Reddit[J]. Internet Interv,2021,26:100467. doi:10 . |
1016/j.invent.2021.100467. | |
34 | VAN GESTEL T, SUYKENS J A K, BAESENS B, et al. Benchmarking least squares support vector machine classifiers[J]. Mach Learn,2004,54(1):5-32. doi:10.1023/B:MACH.0000008082.80494.e0 . |
35 | DONG N, LU W C, CHEN N Y, et al. Using support vector classification for SAR of fentanyl derivatives[J]. Acta Pharmacol Sin,2005,26(1):107-112. doi:10.1111/j.1745-7254.2005.00014.x . |
36 | ABDI H, WILLIAMS L J. Principal component analysis[J]. WIREs Comput Stat,2010,2(4):433-459. doi:10.1002/wics.101 . |
37 | MCKEOWN H E, ROOK T J, PEARSON J R, et al. Classification of fentanyl precursors by multivariate analysis of low-field nuclear magnetic resonance spectroscopy data[J]. Forensic Chem,2020,21:100285. doi:10.1016/j.forc.2020.100285 . |
38 | GILBERT N, MEWIS R E, SUTCLIFFE O B. Classification of fentanyl analogues through principal component analysis (PCA) and hierarchical clustering of GC-MS data[J]. Forensic Chem,2020,21:100287. doi:10.1016/j.forc.2020.100287 . |
39 | 薛康,何嘉玲,吴雪梅,等. 超高效液相色谱-串联质谱法测定毛发中5种芬太尼类新精神活性物质的方法研究与应用[J].质量安全与检验检测,2022,32(2):9-12. |
XUE K, HE J L, WU X M, et al. Establishment and application of UPLC-MS/MS method for 5 fentanyl-analogs of new psychoactive substance in human hair[J]. Zhiliang Anquan Yu Jianyan Jiance,2022,32(2):9-12. | |
40 | 董振霖,杨春光,徐天,等. 液相色谱-四极杆/飞行时间质谱法分析29种芬太尼类物质及其碎裂机理[J].色谱,2022,40(1):28-40. doi:10.3724/SP.J.1123.2021.01036 . |
DONG Z L, YANG C G, XU T, et al. Analysis of 29 fentanyl analogs and their fragmentation mechanism by liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Sepu,2022,40(1):28-40. | |
41 | 郑天,周亚红,黄志伟,等. 应用超高效液相色谱串联三重四极杆飞行时间质谱对多种新型毒品的定量定性测定[J].分析化学进展,2019,9(2):95-106. doi:10.12677/aac.2019.92013 . |
ZHENG T, ZHOU Y H, HUANG Z W, et al. Qualitative and quantitative analysis of various new psychoactive substances by UPLC-QTOF-MS/MS[J].Fenxi Huaxue Jinzhan,2019,9(2):95-106. | |
42 | BERAN J A, KEVAN L. Molecular electron ionization cross sections at 70 eV[J]. J Phys Chem,1969,73(11):3866-3876. doi:10.1021/j100845a050 . |
43 | KOSHUTE P, HAGAN N, JAMESON N J. Machine learning model for detecting fentanyl analogs from mass spectra[J]. Forensic Chem,2022,27:100379. doi:10.1016/j.forc.2021.100379 . |
44 | BUJA A, SWAYNE D F, LITTMAN M L, et al. Data visualization with multidimensional scaling[J]. J Comput Graph Stat,2008,17(2):444-472. doi:10.1198/106186008X318440 . |
45 | VALDEZ C A, LEIF R N, MAYER B P. An efficient, optimized synthesis of fentanyl and related analogs[J]. PLoS One,2014,9(9):e108250. doi:10.1371/ journal.pone.0108250 . |
46 | MUSTAZZA C, BORIONI A, SESTILI I, et al. Synthesis and evaluation as NOP ligands of some spiro[piperidine-4,2’(1’H)-quinazolin]-4’(3’H)-ones and spiro[piperidine-4,5’(6’H)-[1,2,4]triazolo[1,5-c]quinazolines[J]. Chem Pharm Bull (Tokyo),2006,54(5):611-622. doi:10.1248/cpb.54.611 . |
47 | GRISHINA G V, POTAPOV V M, ABDULGA-NEEVA S A, et al. Steric control of the asymmetric synthesis of N-substitued 2-methyl-4-piperidones[J]. Chem Heterocycl Compd,1985,21(12):1355-1362. doi:10.1007/BF00842959 . |
48 | MAYER B P, DEHOPE A J, MEW D A, et al. Chemical attribution of fentanyl using multivariate statistical analysis of orthogonal mass spectral data[J]. Anal Chem,2016,88(8):4303-4310. doi:10.1021/acs. analchem.5b04434 . |
49 | MÖRÉN L, QVARNSTRÖM J, ENGQVIST M, et al. Attribution of fentanyl analogue synthesis routes by multivariate data analysis of orthogonal mass spectral data[J]. Talanta,2019,203:122-130. doi:10.1016/j.talanta.2019.05.025 . |
50 | SCHULZ H, BARANSKA M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy[J]. Vib Spectrosc,2007,43(1):13-25. doi:10.1016/j.vibspec.2006.06.001 . |
51 | NEUGEBAUER U, RÖSCH P, POPP J. Raman spectroscopy towards clinical application: Drug monitoring and pathogen identification[J]. Int J Antimicrob Agents,2015,46(S1):S35-S39. doi:10.1016/j.ijantimicag.2015.10.014 . |
52 | 董荣录,李绍飞,林东岳,等. 表面增强拉曼光谱在毒品检测中的应用进展[J].中国科学(化学),2021,51(3):294-309. doi:10.1360/SSC-2020-0196 . |
DONG R L, LI S F, LIN D Y, et al. Progress of the applications of surface-enhanced Raman spectroscopy in illicit drug detection[J]. Zhongguo Kexue (Huaxue),2021,51(3):294-309. | |
53 | 赵凌艺,杨瑞琴,蔡伟平. 表面增强拉曼光谱在传统阿片毒品检测中的应用[J].激光与光电子学进展,2022,59(17):27-36. doi:10.3788/LOP202259.1700002 . |
ZHAO L Y, YANG R Q, CAI W P. Application of surface-enhanced Raman spectroscopy in the detection of classical opioids[J]. Jiguang Yu Guangdianzixue Jinzhan,2022,59(17):27-36. | |
54 | DIES H, RAVEENDRAN J, ESCOBEDO C, et al. Rapid identification and quantification of illicit drugs on nanodendritic surface-enhanced Raman scattering substrates[J]. Sensor Actuat B Chem,2018,257:382-388. doi:10.1016/j.snb.2017.10.181 . |
55 | SIVASHANMUGAN K, SQUIRE K, TAN A, et al. Trace detection of tetrahydrocannabinol in body fluid via surface-enhanced Raman scattering and principal component analysis[J]. ACS Sens,2019,4(4):1109-1117. doi:10.1021/acssensors.9b00476 . |
56 | SALEMMILANI R, PIOREK B D, MIRSAFAVI R Y, et al. Dielectrophoretic nanoparticle aggregation for on-demand surface enhanced Raman spectroscopy analysis[J]. Anal Chem,2018,90(13):7930-7936. doi:10.1021/acs.analchem.8b00510 . |
57 | WANG K, XU B, WU J, et al. Elucidating fentanyls differentiation from morphines in chemical and biological samples with surface-enhanced Raman spectroscopy[J]. Electrophoresis,2019,40(16/17):2193-2203. doi:10.1002/elps.201900004 . |
58 | HADDAD A, COMANESCU M A, GREEN O, et al. Detection and quantitation of trace fentanyl in heroin by surface-enhanced Raman spectroscopy[J]. Anal Chem,2018,90(21):12678-12685. doi:10.1021/acs.analchem.8b02909 . |
59 | GOZDZIALSKI L, RAMSAY M, LARNDER A, et al. Fentanyl detection and quantification using portable Raman spectroscopy in community drug checking[J]. J Raman Spectrosc,2021,52(7):1308-1316. doi:10.1002/jrs.6133 . |
60 | MIRSAFAVI R, MOSKOVITS M, MEINHART C. Detection and classification of fentanyl and its precursors by surface-enhanced Raman spectroscopy[J]. Analyst,2020,145(9):3440-3446. doi:10.1039/c9an02568e . |
61 | REICH G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications[J]. Adv Drug Deliv Rev,2005,57(8):1109-1143. doi:10.1016/j.addr.2005.01.020 . |
62 | KRANENBURG R F, VERDUIN J, WEESEPOEL Y, et al. Rapid and robust on-scene detection of cocaine in street samples using a handheld near-infrared spectrometer and machine learning algorithms[J]. Drug Test Anal,2020,12(10):1404-1418. doi:10.1002/dta.2895 . |
63 | LIU C M, HAN Y, MIN S G, et al. Rapid qualitative and quantitative analysis of methamphetamine, ketamine, heroin, and cocaine by near-infrared spectroscopy[J]. Forensic Sci Int,2018,290:162-168. doi:10.1016/j.forsciint.2018.07.008 . |
64 | HESPANHOL M C, PASQUINI C, MALDANER A O. Evaluation of a low-cost portable near-infrared spectrophotometer for in situ cocaine profiling[J]. Talanta,2019,200:553-561. doi:10.1016/j.talanta.2019.03.091 . |
65 | ANTONIDES L H, BRIGNALL R M, COSTELLO A, et al. Rapid identification of novel psychoactive and other controlled substances using low-field 1H NMR spectroscopy[J]. ACS Omega,2019,4(4):7103-7112. doi:10.1021/acsomega.9b00302 . |
66 | DRAPER S L, MCCARNEY E R. Benchtop nuclear magnetic resonance spectroscopy in forensic chemistry[J]. Magn Reson Chem,2023,61(2):106-129. doi:10.1002/mrc.5197 . |
67 | DUFFY J, URBAS A, NIEMITZ M, et al. Differentiation of fentanyl analogues by low-field NMR spectroscopy[J]. Anal Chim Acta,2019,1049:161-169. doi:10.1016/j.aca.2018.12.014 . |
[1] | Wen LI, Hao-zhe LI, Chen CHEN, Wei-xiong CAI. Research Progress and Application Prospect of Facial Micro-Expression Analysis in Forensic Psychiatry [J]. Journal of Forensic Medicine, 2023, 39(5): 493-500. |
[2] | Zhong-hua WANG, Shu-jin LI. Research Progress on Molecular Biology of Human Height Estimation [J]. Journal of Forensic Medicine, 2023, 39(5): 487-492. |
[3] | Lu CHEN, Zhe ZHOU, Sheng-qi WANG. Process of Forensic Medicine in DNA Identification of Aged Human Remains [J]. Journal of Forensic Medicine, 2023, 39(5): 478-486. |
[4] | Yong ZENG, Dong-hua ZOU, Ying FAN, Qing XU, Lu-yang TAO, Yi-jiu CHEN, Zheng-dong LI. Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics [J]. Journal of Forensic Medicine, 2023, 39(5): 471-477. |
[5] | Hong-xia HAO, Jie-min CHEN, Rong-rong WANG, Xiao-ying YU, Meng WANG, Zhi-lu ZHOU, Yan-liang SHENG, Wen-tao XIA. The Value of VR-PVEP in Objective Evaluation of Monocular Refractive Visual Impairment [J]. Journal of Forensic Medicine, 2023, 39(4): 382-387. |
[6] | Jie BAI, Jing SUN, Xiao-guang CHENG, Fan LIU, Hua LIU, Xu WANG. Construction and Application of Rib Fracture Diagnosis Model Based on YOLOv3 Algorithm [J]. Journal of Forensic Medicine, 2023, 39(4): 343-349. |
[7] | Fei FAN, Juan WU, Zhen-hua DENG. Application Progress of Objective Audiological Detection Techniques in Forensic Clinical Medicine [J]. Journal of Forensic Medicine, 2023, 39(4): 360-366. |
[8] | Jian XIANG, Xu WANG, Li-li YU, Kang-jia JIN, Ying-kai YANG. Objective Assessment of Visual Field Defects Caused by Optic Chiasm and Its Posterior Visual Pathway Injury [J]. Journal of Forensic Medicine, 2023, 39(4): 350-359. |
[9] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[10] | Zhang-ming GAO, Jing-yu SHI, Hao ZENG, Xue-jun ZHANG. Rapid Determination of Bucinnazine in Blood by UPLC-MS/MS [J]. Journal of Forensic Medicine, 2023, 39(4): 388-392. |
[11] | Xu WANG. Legal Theories, Disability Models and Principles of Disability Assessment [J]. Journal of Forensic Medicine, 2023, 39(4): 329-336. |
[12] | Ran LI, Hong-yu SUN. Methods and Research Hotspots of Forensic Kinship Testing [J]. Journal of Forensic Medicine, 2023, 39(3): 231-239. |
[13] | Xiao-yan MA, Hong-yu SUN, Qing LI. Research Progresses of Tri-Allelic Patterns in Autosomal STR in Forensic DNA Analysis [J]. Journal of Forensic Medicine, 2023, 39(3): 240-246. |
[14] | Hao-yang WANG, Jian WU, Qian ZHANG, Xin-feng MIN, Xiu-yan LIU, Yin-long GUO. Structural Analysis and Characterization of 4-F-α-PVP Analog 4-F-3-Methyl-α- PVP Hydrochloride [J]. Journal of Forensic Medicine, 2023, 39(2): 144-150. |
[15] | Hang CHEN, Jing HU, Zheng QIAO, Hong-xiao DENG, Min LÜ, Wei LIU. Research Progress on Biological Matrix Reference Materials in Forensic Toxicology [J]. Journal of Forensic Medicine, 2023, 39(2): 176-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||