法医学杂志 ›› 2024, Vol. 40 ›› Issue (1): 70-76.DOI: 10.12116/j.issn.1004-5619.2022.521001
收稿日期:
2022-10-03
发布日期:
2024-03-19
出版日期:
2024-02-25
通讯作者:
严江伟
作者简介:
胡文静(1998—),女,硕士研究生,主要从事法医基因组学研究;E-mail:huwenjing@sxmu.edu.cn
基金资助:
Wen-jing HU(), Ting-ting YANG, Ya-ya WANG, Jiang-wei YAN(
)
Received:
2022-10-03
Online:
2024-03-19
Published:
2024-02-25
Contact:
Jiang-wei YAN
摘要:
近年来,随着DNA提取和检测技术的不断进步,游离DNA(cell-free DNA,cfDNA)已经在生命科学领域得到了广泛应用,在法医学鉴定领域中的潜在应用价值也越来越明显。本文回顾了cfDNA概念、形成机制与分类等,并阐述了cfDNA在法医学现场接触检材的个体识别和无创产前亲缘关系鉴定应用中的最新研究进展,同时总结了cfDNA在损伤推断中的应用潜力,并探讨了常用cfDNA分析方法和技术的优缺点及应用展望,为cfDNA在法医学领域的广泛应用提供新思路。
中图分类号:
胡文静, 杨婷婷, 王雅雅, 严江伟. 游离DNA最新研究进展及法医学应用展望[J]. 法医学杂志, 2024, 40(1): 70-76.
Wen-jing HU, Ting-ting YANG, Ya-ya WANG, Jiang-wei YAN. The Latest Research Progress on Cell-Free DNA and Prospects of Its Forensic Application[J]. Journal of Forensic Medicine, 2024, 40(1): 70-76.
1 | MANDEL P, MÉTAIS P. Nuclear acids in human blood plasma[J]. C R Seances Soc Biol Fil,1948,142(3/4):241-243. |
2 | WERNER B, WARTON K, FORD C E. Transcending blood-opportunities for alternate liquid biopsies in oncology[J]. Cancers,2022,14(5):1309. doi:10.3390/cancers14051309 . |
3 | HAN D S C, DENNIS LO Y M. The nexus of cfDNA and nuclease biology[J]. Trends Genet,2021,37(8):758-770. doi:10.1016/j.tig.2021.04.005 . |
4 | THIERRY A R, MESSAOUDI S EL, GAHAN P B, et al. Origins, structures, and functions of circulating DNA in oncology[J]. Cancer Metastasis Rev,2016,35(3):347-376. doi:10.1007/s10555-016-9629-x . |
5 | BRONKHORST A J, UNGERER V, DIEHL F, et al. Towards systematic nomenclature for cell-free DNA[J]. Hum Genet,2021,140(4):565-578. doi:10.1007/s00439-020-02227-2 . |
6 | SNYDER M W, KIRCHER M, HILL A J, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin[J]. Cell,2016,164(1/2):57-68. doi:10.1016/j.cell.2015.11.050 . |
7 | SANCHEZ C, ROCH B, MAZARD T, et al. Circulating nuclear DNA structural features, origins, and complete size profile revealed by fragmentomics[J]. JCI Insight,2021,6(7):e144561. doi:10.1172/jci.insight.144561 . |
8 | SZILÁGYI M, PÖS O, MÁRTON É, et al. Circulating cell-free nucleic acids: Main characteristics and clinical application[J]. Int J Mol Sci,2020,21(18):6827. doi:10.3390/ijms21186827 . |
9 | GIACONA M B, RUBEN G C, ICZKOWSKI K A, et al. Cell-free DNA in human blood plasma: Length measurements in patients with pancreatic cancer and healthy controls[J]. Pancreas,1998,17(1):89-97. doi:10.1097/00006676-199807000-00012 . |
10 | MEDDEB R, AMIR DACHE Z AL, THEZENAS S, et al. Quantifying circulating cell-free DNA in humans[J]. Sci Rep,2019,9(1):5220. doi:10.1038/s41598-019-41593-4 . |
11 | THURAIRAJAH K, BRIGGS G D, BALOGH Z J. The source of cell-free mitochondrial DNA in trauma and potential therapeutic strategies[J]. Eur J Trauma Emerg Surg,2018,44(3):325-334. doi:10.1007/s00068-018-0954-3 . |
12 | JIANG P Y, CHAN C W M, CHAN K C, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients[J]. Proc Natl Acad Sci USA,2015,112(11):E1317-E1325. doi:10.1073/ pnas.1500076112 . |
13 | ZHANG R Y, NAKAHIRA K, GUO X X, et al. Very short mitochondrial DNA fragments and heteroplasmy in human plasma[J]. Sci Rep,2016,6:36097. doi:10.1038/srep36097 . |
14 | BURNHAM P, KIM M S, AGBOR-ENOH S, et al. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma[J]. Sci Rep,2016,6:27859. doi:10.1038/srep27859 . |
15 | BARRA G B, SANTA RITA T H, DE ALMEIDA VASQUES J, et al. EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples[J]. Clin Biochem,2015,48(15):976-981. doi:10.1016/j.clinbiochem.2015.02.014 . |
16 | JUNG M, KLOTZEK S, LEWANDOWSKI M, et al. Changes in concentration of DNA in serum and plasma during storage of blood samples[J]. Clin Chem,2003,49(6Pt1):1028-1029. doi:10.1373/49.6. 1028 . |
17 | 徐鹏,段小瑜,张海梅,等. 专用采血管对血浆中循环游离DNA保存效果的影响[J].检验医学与临床,2021,18(8):1035-1037,1041. doi:10.3969/j.issn.1672-9455.2021.08.003 . |
XU P, DUAN X Y, ZHANG H M, et al. Infuence of special blood collection tubes on preservation effect of circulating free DNA in plasma[J]. Jianyan Yixue Yu Linchuang,2021,18(8):1035-1037,1041. | |
18 | FERNANDO M R, CHEN K, NORTON S, et al. A new methodology to preserve the original proportion and integrity of cell-free fetal DNA in maternal plasma during sample processing and storage[J]. Prenat Diagn,2010,30(5):418-424. doi:10.1002/pd.2484 . |
19 | WARE S A, DESAI N, LOPEZ M, et al. An automated, high-throughput methodology optimized for quantitative cell-free mitochondrial and nuclear DNA isolation from plasma[J]. J Biol Chem,2020,295(46):15677-15691. doi:10.1074/jbc.RA120.015237 . |
20 | MESSAOUDI S EL, ROLET F, MOULIERE F, et al. Circulating cell free DNA: Preanalytical considerations[J]. Clin Chimica Acta,2013,424:222-230. doi:10.1016/j.cca.2013.05.022 . |
21 | TRIGG R M, MARTINSON L J, PARPART-LI S, et al. Factors that influence quality and yield of circulating-free DNA: A systematic review of the methodology literature[J]. Heliyon,2018,4(7):e00699. doi:10.1016/j.heliyon.2018.e00699 . |
22 | CAVANAUGH S E, BATHRICK A S. Direct PCR amplification of forensic touch and other challenging DNA samples: A review[J]. Forensic Sci Int Genet,2018,32:40-49. doi:10.1016/j.fsigen.2017.10.005 . |
23 | RYAN A, BANER J, DEMKO Z, et al. Informatics-based, highly accurate, noninvasive prenatal paternity testing[J]. Genet Med,2013,15(6):473-477. doi:10.1038/gim.2012.155 . |
24 | SONG W Q, XIAO N, ZHOU S H, et al. Non-invasive prenatal paternity testing by analysis of Y-chromosome mini-STR haplotype using next-generation sequencing[J]. PLoS One,2022,17(4):e0266332. doi:10.1371/journal.pone.0266332 . |
25 | SONG P, WU L R, YAN Y H, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics[J]. Nat Biomed Eng,2022,6(3):232-245. doi:10.1038/s41551-021-00837-3 . |
26 | WEN L, LI J Y, GUO H H, et al. Genome-scale detection of hypermethylated CpG Islands in circulating cell-free DNA of hepatocellular carcinoma patients[J]. Cell Res,2015,25(11):1250-1264. doi:10.1038/cr.2015.126 . |
27 | SHEN S Y, BURGENER J M, BRATMAN S V, et al. Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA[J]. Nat Protoc,2019,14(10):2749-2780. doi:10.1038/s41596-019-0202-2 . |
28 | HUANG J Y, SOUPIR A C, WANG L. Cell-free DNA methylome profiling by MBD-seq with ultra-low input[J]. Epigenetics,2022,17(3):239-252. doi:10.1080/15592294.2021.1896984 . |
29 | DENNIS LO Y M, CORBETTA N, CHAMBERLAIN P F, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet,1997,350(9076):485-487. doi:10.1016/S0140-6736(97)02174-0 . |
30 | KITA T, YAMAGUCHI H, YOKOYAMA M, et al. Morphological study of fragmented DNA on touched objects[J]. Forensic Sci Int Genet,2008,3(1):32-36. doi:10.1016/j.fsigen.2008.09.002 . |
31 | QUINONES I, DANIEL B. Cell free DNA as a component of forensic evidence recovered from touched surfaces[J]. Forensic Sci Int Genet,2012,6(1):26-30. doi:10.1016/j.fsigen.2011.01.004 . |
32 | VANDEWOESTYNE M, VAN HOOFSTAT D, FRANSSEN A, et al. Presence and potential of cell free DNA in different types of forensic samples[J]. Forensic Sci Int Genet,2013,7(2):316-320. doi:10.1016/j.fsigen.2012.12.005 . |
33 | BURRILL J, DANIEL B, FRASCIONE N. Technical Note: Lysis and purification methods for increased recovery of degraded DNA from touch deposit swabs[J]. Forensic Sci Int,2022,330:111102. doi:10.1016/j.forsciint.2021.111102 . |
34 | BURRILL J, KOMBARA A, DANIEL B, et al. Exploration of cell-free DNA (cfDNA) recovery for touch deposits[J]. Forensic Sci Int Genet,2021,51:102431. doi:10.1016/j.fsigen.2020.102431 . |
35 | WAGNER J, DZIJAN S, MARJANOVIĆ D, et al. Non-invasive prenatal paternity testing from maternal blood[J]. Int J Legal Med,2009,123(1):75-79. doi:10.1007/s00414-008-0292-9 . |
36 | 陈阳,胡利平,马波,等. 血浆游离DNA的STR分型检测研究[J].昆明医科大学学报,2014,35(1):140-143. |
CHEN Y, HU L P, MA B, et al. Study on STR genotyping of cell free DNA in plasma[J]. Kunming Yike Daxue Xuebao,2014,35(1):140-143. | |
37 | SHIH S Y, BOSE N, GONÇALVES A B R, et al. Applications of probe capture enrichment next generation sequencing for whole mitochondrial genome and 426 nuclear SNPs for forensically challenging samples[J]. Genes,2018,9(1):49. doi:10.3390/genes9010049 . |
38 | BOSE N, CARLBERG K, SENSABAUGH G, et al. Target capture enrichment of nuclear SNP markers for massively parallel sequencing of degraded and mixed samples[J]. Forensic Sci Int Genet,2018,34:186-196. doi:10.1016/j.fsigen.2018.01.010 . |
39 | KIM E H, LEE H Y, YANG I S, et al. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons[J]. Forensic Sci Int Genet,2016,22:1-7. doi:10.1016/j.fsigen.2016.01.001 . |
40 | KIM J, KIM H, NAM Y H, et al. Efficacy of reduced-size short tandem repeat PCR analysis for degraded DNA samples[J]. Genes Genomics,2021,43(7):749-758. doi:10.1007/s13258-021-01066-3 . |
41 | VAN NIEUWERBURGH F, VAN HOOFSTAT D, VAN NESTE C, et al. Retrospective study of the impact of miniSTRs on forensic DNA profiling of touch DNA samples[J]. Sci Justice,2014,54(5):369-372. doi:10.1016/j.scijus.2014.05.009 . |
42 | URTIAGA G O, DOMINGUES W B, KOMNINOU E R, et al. DNA microarray for forensic intelligence purposes: High-density SNP profiles obtained directly from casework-like samples with and without a DNA purification step[J]. Forensic Sci Int,2022,332:111181. doi:10.1016/j.forsciint. 2022.111181 . |
43 | TILLMAR A, SJÖLUND P, LUNDQVIST B, et al. Whole-genome sequencing of human remains to enable genealogy DNA database searches -- A case report[J]. Forensic Sci Int Genet,2020,46:102233. doi:10.1016/j.fsigen.2020.102233 . |
44 | ADACHI N, UMETSU K, SHOJO H. Forensic strategy to ensure the quality of sequencing data of mitochondrial DNA in highly degraded samples[J]. Leg Med,2014,16(1):52-55. doi:10.1016/j.legalmed.2013.10.001 . |
45 | BRAMBATI B, SIMONI G, TRAVI M, et al. Genetic diagnosis by chorionic villus sampling before 8 gestational weeks: Efficiency, reliability, and risks on 317 completed pregnancies[J]. Prenat Diagn,1992,12(10):789-799. doi:10.1002/pd.1970121004 . |
46 | ELCHALAL U, SHACHAR I B, PELEG D, et al. Maternal mortality following diagnostic 2nd-trimester amniocentesis[J]. Fetal Diagn Ther,2004,19(2):195-198. doi:10.1159/000075150 . |
47 | YU S C Y, LEE S W Y, JIANG P Y, et al. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing[J]. Clin Chem,2013,59(8):1228-1237. doi:10.1373/clinchem.2013.203679 . |
48 | FAN H C, BLUMENFELD Y J, CHITKARA U, et al. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing[J]. Clin Chem,2010,56(8):1279-1286. doi:10.1373/clinche m.2010.144188 . |
49 | GYSI M, ARORA N, SULZER A, et al. Non-invasive prenatal paternity testing with STRs: A pilot study[J]. Forensic Sci Int Genet Suppl Ser,2015,5:e291-e292. doi:10.1016/j.fsigss.2015.09.115 . |
50 | 蒋浩君. STR及SNP分型技术在无创产前亲子鉴定中的应用[D].南京:东南大学,2016. |
JIANG H J. A pilot study of noninvasive prenatal paternity tesing based on STR and SNP typing[D]. Nanjing: Southeast University,2016. | |
51 | HOMER N, SZELINGER S, REDMAN M, et al. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays[J]. PLoS Genet,2008,4(8):e1000167. doi:10.1371/journal.pgen.1000167 . |
52 | CHANG L, YU H Y, MIAO X Y, et al. Development and comprehensive evaluation of a noninvasive prenatal paternity testing method through a scaled trial[J]. Forensic Sci Int Genet,2019,43:102158. doi:10.1016/j.fsigen.2019.102158 . |
53 | YANG D G, LIANG H, LIN S B, et al. An SNP panel for the analysis of paternally inherited alleles in maternal plasma using ion Torrent PGM[J]. Int J Legal Med,2018,132(2):343-352. doi:10.1007/s00414-017-1594-6 . |
54 | OU X L, QU N. Noninvasive prenatal paternity testing by target sequencing microhaps[J]. Forensic Sci Int Genet,2020,48:102338. doi:10.1016/j.fsigen.2020.102338 . |
55 | MORIOT A, HALL D. Analysis of fetal DNA in maternal plasma with markers designed for forensic DNA mixture resolution[J]. Genet Med,2019,21(3):613-621. doi:10.1038/s41436-018-0102-9 . |
56 | POON L L M, LEUNG T N, LAU T K, et al. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma[J]. Clin Chem,2002,48(1):35-41. |
57 | PAPAGEORGIOU E A, FIEGLER H, RAKYAN V, et al. Sites of differential DNA methylation between placenta and peripheral blood: Molecular markers for noninvasive prenatal diagnosis of aneuploidies[J]. Am J Pathol,2009,174(5):1609-1618. doi:10.2353/ajpath.2009.081038 . |
58 | LI N, DU Q X, BAI R F, et al. Vitality and wound-age estimation in forensic pathology: Review and future prospects[J]. Forensic Sci Res,2020,5(1):15-24. doi:10.1080/20961790.2018.1445441 . |
59 | LAM N Y L, RAINER T H, CHAN L Y S, et al. Time course of early and late changes in plasma DNA in trauma patients[J]. Clin Chem,2003,49(8):1286-1291. doi:10.1373/49.8.1286 . |
60 | REN B Q, LIU F W, XU F, et al. Is plasma cell-free DNA really a useful marker for diagnosis and treatment of trauma patients?[J]. Clin Chimica Acta,2013,424:109-113. doi:10.1016/j.cca.2013.05.015 . |
61 | GÖGENUR M, BURCHARTH J, GÖGENUR I. The role of total cell-free DNA in predicting outcomes among trauma patients in the intensive care unit: A systematic review[J]. Crit Care,2017,21(1):14. doi:10.1186/s13054-016-1578-9 . |
62 | MCILROY D J, JARNICKI A G, AU G G, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery[J]. J Crit Care,2014,29(6):1133.e1-1133.e5. doi:10.1016/j.jcrc.2014.07.013 . |
63 | STORTZ J A, HAWKINS R B, HOLDEN D C, et al. Cell-free nuclear, but not mitochondrial, DNA concentrations correlate with the early host inflammatory response after severe trauma[J]. Sci Rep,2019,9(1):13648. doi:10.1038/s41598-019-50044-z . |
64 | FOX A, GAL S, FISHER N, et al. Quantification of circulating cell-free plasma DNA and endothelial gene RNA in patients with burns and relation to acute thermal injury[J]. Burns,2008,34(6):809-816. doi:10.1016/j.burns.2007.10.003 . |
65 | CHIU T W, YOUNG R, CHAN L Y S, et al. Plasma cell-free DNA as an indicator of severity of injury in burn patients[J]. Clin Chem Lab Med,2006,44(1):13-17. doi:10.1515/CCLM.2006.003 . |
66 | BRODBECK K, KERN S, SCHICK S, et al. Quantitative analysis of individual cell-free DNA concentration before and after penetrating trauma[J]. Int J Legal Med,2019,133(2):385-393. doi:10.1007/s00414-018-1945-y . |
67 | SUN K, JIANG P Y, CHENG S H, et al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin[J]. Genome Res,2019,29(3):418-427. doi:10.1101/gr.242719.118 . |
[1] | 姚彦汝, 金静, 王英杰, 张金专, 李英哲, 徐永新. 火场生物物证识别研究进展[J]. 法医学杂志, 2024, 40(1): 64-69. |
[2] | 范庆炜, 李凌, 杨慧凌, 邓婷婷, 徐冬冬, 王韵, 杜冰, 严江伟. 法医学混合斑研究现状及趋势的文献计量和可视化分析[J]. 法医学杂志, 2024, 40(1): 20-29. |
[3] | 邢运虹, 李洋, 王文政, 王亮亮, 孙乐乐, 杜秋香, 曹洁, 何光龙, 孙俊红. 不稳定冠状动脉粥样斑块病理特征及分类[J]. 法医学杂志, 2024, 40(1): 59-63. |
[4] | 刘光渊. 应用多种遗传标记分析同母异父双胞胎亲子鉴定1例[J]. 法医学杂志, 2024, 40(1): 106-108. |
[5] | 云鹏, 陈安琪, 陈丽琴, 李成涛. 42个微单倍型复合检测体系的构建及法医学应用[J]. 法医学杂志, 2024, 40(1): 50-58. |
[6] | 杨彬, 徐璐瑶, 李灵玥, 乔东访, 杜思昊, 岳霞, 王慧君. 全球新型冠状病毒感染(COVID-19)相关死亡的病理变化及死因分析[J]. 法医学杂志, 2023, 39(6): 586-595. |
[7] | 黄逸航, 梁伟波, 蹇慧, 屈胜秋. 基于DNA甲基化推断年龄的建模方法与影响因素[J]. 法医学杂志, 2023, 39(6): 601-607. |
[8] | 高林林, 谢炜, 朱素娟, 李达, 王琴, 洪亮, 李佑英. IDentifier DNA分型盒(炎黄34)的法医学验证及应用评估[J]. 法医学杂志, 2023, 39(6): 579-585. |
[9] | 马星宇, 程浩, 张忠铎, 李烨铭, 赵东. 代谢组学技术结合机器学习算法在损伤时间推断中的研究进展[J]. 法医学杂志, 2023, 39(6): 596-600. |
[10] | 陶瑞旸, 王守宇, 袁春艳, 夏若成, 李成涛. 应用SNaPshot技术检测精液特异性cSNP遗传标记[J]. 法医学杂志, 2023, 39(5): 465-470. |
[11] | 李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500. |
[12] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[13] | 张琦, 赵禾苗, 杨康, 陈静, 杨瑞琴, 王冲. 利用朴素贝叶斯和多元logistic回归构建月经血mRNA标志分析模型[J]. 法医学杂志, 2023, 39(5): 447-451. |
[14] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[15] | 曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||