Journal of Forensic Medicine ›› 2021, Vol. 37 ›› Issue (6): 817-824.DOI: 10.12116/j.issn.1004-5619.2021.510404
• Original Article • Previous Articles Next Articles
Yi-ling QU1(), Yuan LIN2(
), Zi-hao YANG2,3, Rui-yang TAO2, Ruo-cheng XIA2, Zheng-jun CAO4, Rui-xiang GAO4, Huan YU1,2, Zi-wei WANG1,2, Qi YANG1,2, Xiao-chun ZHANG1,2, Su-hua ZHANG2(
), Cheng-tao LI1,2(
)
Received:
2021-04-27
Online:
2021-12-25
Published:
2021-12-28
Contact:
Su-hua ZHANG,Cheng-tao LI
CLC Number:
Yi-ling QU, Yuan LIN, Zi-hao YANG, Rui-yang TAO, Ruo-cheng XIA, Zheng-jun CAO, Rui-xiang GAO, Huan YU, Zi-wei WANG, Qi YANG, Xiao-chun ZHANG, Su-hua ZHANG, Cheng-tao LI. Forensic Application of ForenSeqTM DNA Signature Prep Kit in Zhengjiang She Ethnic Group[J]. Journal of Forensic Medicine, 2021, 37(6): 817-824.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2021.510404
基因座 | 引物序列(5'→3') | Tm/℃ | GC/% | 染料 | 浓度/(μmol·L-1) |
---|---|---|---|---|---|
DYS505 | F:TCTGGCGAAGTAACCCAAAC | 58.11 | 50.00 | FAM | 2 |
R:TCGAGTCAGTTCACCAGAAGG | 59.39 | 52.38 | |||
DYS612 | F:CTTGTTGAGATGGTGCAGAAAGG | 60.06 | 47.83 | FAM | 2 |
R:TCTAGAGCCAAAAAGGGAACTGA | 59.35 | 43.38 |
Tab. 1 Primer information of DYS505 and DYS612
基因座 | 引物序列(5'→3') | Tm/℃ | GC/% | 染料 | 浓度/(μmol·L-1) |
---|---|---|---|---|---|
DYS505 | F:TCTGGCGAAGTAACCCAAAC | 58.11 | 50.00 | FAM | 2 |
R:TCGAGTCAGTTCACCAGAAGG | 59.39 | 52.38 | |||
DYS612 | F:CTTGTTGAGATGGTGCAGAAAGG | 60.06 | 47.83 | FAM | 2 |
R:TCTAGAGCCAAAAAGGGAACTGA | 59.35 | 43.38 |
基因座 | 等位基因数 | 提升率/% | 基因座 | 等位基因数 | 提升率/% | ||
---|---|---|---|---|---|---|---|
PCR-CE | MPS | PCR-CE | MPS | ||||
A-STR | X-STR | ||||||
CSF1PO | 7 | 7 | 0 | DXS10103 | 6 | 7 | 16.67 |
D10S1248 | 7 | 7 | 0 | DXS8378 | 4 | 4 | 0 |
D13S317 | 7 | 7 | 0 | DXS10074 | 8 | 8 | 0 |
D16S539 | 6 | 6 | 0 | DXS7132 | 6 | 6 | 0 |
D17S1301 | 7 | 7 | 0 | DXS10135 | 18 | 26 | 44.44 |
D18S51 | 14 | 14 | 0 | DXS7423 | 5 | 5 | 0 |
D5S818 | 7 | 7 | 0 | HPRTB | 6 | 6 | 0 |
D6S1043 | 12 | 12 | 0 | Y-STR | |||
FGA | 13 | 13 | 0 | Y-GATA-H4 | 4 | 4 | 0 |
Penta D | 7 | 7 | 0 | DYS505 | 5 | 5 | 0 |
Penta E | 15 | 15 | 0 | DYS481 | 6 | 6 | 0 |
TH01 | 6 | 6 | 0 | DYS460 | 3 | 3 | 0 |
TPOX | 5 | 5 | 0 | DYS448 | 4 | 4 | 0 |
D19S433 | 10 | 11 | 10.00 | DYS439 | 3 | 3 | 0 |
D20S482 | 7 | 8 | 14.29 | DYS438 | 2 | 2 | 0 |
D7S820 | 7 | 8 | 14.29 | DYS437 | 2 | 2 | 0 |
vWA | 7 | 8 | 14.29 | DYS392 | 2 | 2 | 0 |
D22S1045 | 6 | 7 | 16.67 | DYS391 | 2 | 2 | 0 |
D1S1656 | 10 | 12 | 20.00 | DYS390 | 3 | 5 | 66.67 |
D4S2408 | 5 | 6 | 20.00 | DYS389Ⅱ | 4 | 7 | 75.00 |
D2S441 | 7 | 10 | 42.86 | DYS389Ⅰ | 3 | 3 | 0 |
D8S1179 | 8 | 13 | 62.50 | DYS385a/b | 5 | 5 | 0 |
D3S1358 | 6 | 10 | 66.67 | DYS19 | 4 | 4 | 0 |
D9S1122 | 6 | 10 | 66.67 | DYF387S1 | 7 | 14 | 100.00 |
D2S1338 | 10 | 21 | 110.00 | DYS522 | 4 | 4 | 0 |
D12S391 | 9 | 20 | 122.22 | DYS533 | 3 | 3 | 0 |
D21S11 | 9 | 22 | 144.44 | DYS549 | 3 | 3 | 0 |
DYS570 | 5 | 5 | 0 | ||||
DYS576 | 4 | 4 | 0 | ||||
DYS643 | 4 | 4 | 0 | ||||
DYS635 | 5 | 7 | 40.00 | ||||
DYS612 | 6 | 6 | 0 |
Tab. 2 The number of alleles detected by PCR-CE and MPS and the growth rate in 50 She samples
基因座 | 等位基因数 | 提升率/% | 基因座 | 等位基因数 | 提升率/% | ||
---|---|---|---|---|---|---|---|
PCR-CE | MPS | PCR-CE | MPS | ||||
A-STR | X-STR | ||||||
CSF1PO | 7 | 7 | 0 | DXS10103 | 6 | 7 | 16.67 |
D10S1248 | 7 | 7 | 0 | DXS8378 | 4 | 4 | 0 |
D13S317 | 7 | 7 | 0 | DXS10074 | 8 | 8 | 0 |
D16S539 | 6 | 6 | 0 | DXS7132 | 6 | 6 | 0 |
D17S1301 | 7 | 7 | 0 | DXS10135 | 18 | 26 | 44.44 |
D18S51 | 14 | 14 | 0 | DXS7423 | 5 | 5 | 0 |
D5S818 | 7 | 7 | 0 | HPRTB | 6 | 6 | 0 |
D6S1043 | 12 | 12 | 0 | Y-STR | |||
FGA | 13 | 13 | 0 | Y-GATA-H4 | 4 | 4 | 0 |
Penta D | 7 | 7 | 0 | DYS505 | 5 | 5 | 0 |
Penta E | 15 | 15 | 0 | DYS481 | 6 | 6 | 0 |
TH01 | 6 | 6 | 0 | DYS460 | 3 | 3 | 0 |
TPOX | 5 | 5 | 0 | DYS448 | 4 | 4 | 0 |
D19S433 | 10 | 11 | 10.00 | DYS439 | 3 | 3 | 0 |
D20S482 | 7 | 8 | 14.29 | DYS438 | 2 | 2 | 0 |
D7S820 | 7 | 8 | 14.29 | DYS437 | 2 | 2 | 0 |
vWA | 7 | 8 | 14.29 | DYS392 | 2 | 2 | 0 |
D22S1045 | 6 | 7 | 16.67 | DYS391 | 2 | 2 | 0 |
D1S1656 | 10 | 12 | 20.00 | DYS390 | 3 | 5 | 66.67 |
D4S2408 | 5 | 6 | 20.00 | DYS389Ⅱ | 4 | 7 | 75.00 |
D2S441 | 7 | 10 | 42.86 | DYS389Ⅰ | 3 | 3 | 0 |
D8S1179 | 8 | 13 | 62.50 | DYS385a/b | 5 | 5 | 0 |
D3S1358 | 6 | 10 | 66.67 | DYS19 | 4 | 4 | 0 |
D9S1122 | 6 | 10 | 66.67 | DYF387S1 | 7 | 14 | 100.00 |
D2S1338 | 10 | 21 | 110.00 | DYS522 | 4 | 4 | 0 |
D12S391 | 9 | 20 | 122.22 | DYS533 | 3 | 3 | 0 |
D21S11 | 9 | 22 | 144.44 | DYS549 | 3 | 3 | 0 |
DYS570 | 5 | 5 | 0 | ||||
DYS576 | 4 | 4 | 0 | ||||
DYS643 | 4 | 4 | 0 | ||||
DYS635 | 5 | 7 | 40.00 | ||||
DYS612 | 6 | 6 | 0 |
群体遗传学参数 | 基于重复序列多态性 | 基于片段长度多态性 |
---|---|---|
27个A-STR(n=50) | ||
多态信息含量(PIC) | 0.756 7(0.556 7~0.911 3) | 0.732 4(0.556 7~0.872 8) |
个体识别率(DP) | 0.905 1(0.791 2~0.968 0) | 0.892 7(0.791 2~0.956 8) |
累积个体识别率(CDP) | 1-8.87×10-30 | 1-4.14×10-28 |
二联体非父排除率(PEduo) | 0.451 4(0.240 1~0.714 3) | 0.395 6(0.201 3~0.621 1) |
三联体非父排除率(PEtrio) | 0.634 5(0.432 5~0.838 2) | 0.585 6(0.385 5~0.774 7) |
累积二联体非父排除率(CPEduo) | 0.999 999 962 640 657 | 0.999 999 289 201 538 |
累积三联体非父排除率(CPEtrio) | 0.999 999 999 999 633 | 0.999 999 999 983 129 |
7个X-STR(n=50) | ||
多态信息含量(PIC) | 0.701 9(0.476 0~0.928 3) | 0.686 3(0.451 8~0.898 3) |
女性个体识别率(DPf) | 0.879 9(0.722 6~0.991 5) | 0.869 7(0.700 6~0.983 7) |
男性个体识别率(DPm) | 0.743 2(0.558 4~0.932 1) | 0.728 9(0.534 2~0.905 8) |
累积女性个体识别率(CPDf) | 0.999 970 057 036 496 | 0.999 999 929 094 268 |
累积男性个体识别率(CPDm) | 0.999 999 972 797 382 | 0.999 949 621 034 335 |
二联体平均非父排除率 | 0.576 7(0.410 6~0.870 7) | 0.558 7(0.313 2~0.822 5) |
三联体平均非父排除率 | 0.701 9(0.476 0~0.928 3) | 0.686 3(0.451 8~0.898 3) |
累积二联体平均非父排除率 | 0.998 776 019 866 265 | 0.998 078 374 414 182 |
累积三联体平均非父排除率 | 0.999 922 179 142 742 | 0.999 868 063 580 329 |
24个Y-STR(n=22) | ||
单倍型总数 | 19 | 19 |
唯一单倍型数目 | 17 | 17 |
出现2次单倍型数目 | 1 | 1 |
出现3次单倍型数目 | 1 | 1 |
单倍型多样性(HD) | 0.982 683 983 | 0.982 683 983 |
基因多样性(GD) | 0.173 2~0.925 8 | 0.173 2~0.887 4 |
单倍型分辨能力(DC) | 0.863 636 364 | 0.863 636 364 |
单倍型匹配概率(HMP) | 0.061 983 471 | 0.061 983 471 |
Tab. 3 Comparisons of forensic efficiency of STR typing based on repeat sequence polymorphismand fragment length polymorphism
群体遗传学参数 | 基于重复序列多态性 | 基于片段长度多态性 |
---|---|---|
27个A-STR(n=50) | ||
多态信息含量(PIC) | 0.756 7(0.556 7~0.911 3) | 0.732 4(0.556 7~0.872 8) |
个体识别率(DP) | 0.905 1(0.791 2~0.968 0) | 0.892 7(0.791 2~0.956 8) |
累积个体识别率(CDP) | 1-8.87×10-30 | 1-4.14×10-28 |
二联体非父排除率(PEduo) | 0.451 4(0.240 1~0.714 3) | 0.395 6(0.201 3~0.621 1) |
三联体非父排除率(PEtrio) | 0.634 5(0.432 5~0.838 2) | 0.585 6(0.385 5~0.774 7) |
累积二联体非父排除率(CPEduo) | 0.999 999 962 640 657 | 0.999 999 289 201 538 |
累积三联体非父排除率(CPEtrio) | 0.999 999 999 999 633 | 0.999 999 999 983 129 |
7个X-STR(n=50) | ||
多态信息含量(PIC) | 0.701 9(0.476 0~0.928 3) | 0.686 3(0.451 8~0.898 3) |
女性个体识别率(DPf) | 0.879 9(0.722 6~0.991 5) | 0.869 7(0.700 6~0.983 7) |
男性个体识别率(DPm) | 0.743 2(0.558 4~0.932 1) | 0.728 9(0.534 2~0.905 8) |
累积女性个体识别率(CPDf) | 0.999 970 057 036 496 | 0.999 999 929 094 268 |
累积男性个体识别率(CPDm) | 0.999 999 972 797 382 | 0.999 949 621 034 335 |
二联体平均非父排除率 | 0.576 7(0.410 6~0.870 7) | 0.558 7(0.313 2~0.822 5) |
三联体平均非父排除率 | 0.701 9(0.476 0~0.928 3) | 0.686 3(0.451 8~0.898 3) |
累积二联体平均非父排除率 | 0.998 776 019 866 265 | 0.998 078 374 414 182 |
累积三联体平均非父排除率 | 0.999 922 179 142 742 | 0.999 868 063 580 329 |
24个Y-STR(n=22) | ||
单倍型总数 | 19 | 19 |
唯一单倍型数目 | 17 | 17 |
出现2次单倍型数目 | 1 | 1 |
出现3次单倍型数目 | 1 | 1 |
单倍型多样性(HD) | 0.982 683 983 | 0.982 683 983 |
基因多样性(GD) | 0.173 2~0.925 8 | 0.173 2~0.887 4 |
单倍型分辨能力(DC) | 0.863 636 364 | 0.863 636 364 |
单倍型匹配概率(HMP) | 0.061 983 471 | 0.061 983 471 |
1 | 侯一平. 法医物证学[M].4版.北京:人民卫生出版社,2016:53. |
HOU Y P. Forensic genetics[M]. 4th ed. Beijing: People’s Medical Publishing House,2016:53. | |
2 | 张素华,边英男,赵琪,等. 二代测序技术在法医学中的应用进展[J].法医学杂志,2016,32(4):282-289,295. doi:10.3969/j.issn.1004-5619.2016.04.012. |
ZHANG S H, BIAN Y N, ZHAO Q, et al. Review of second generation sequencing and its application in forensic genetics[J]. Fayixue Zazhi,2016,32(4):282-289,295. | |
3 | NOVROSKI N M M, KING J L, CHURCHILL J D, et al. Characterization of genetic sequence variation of 58 STR loci in four major population groups[J]. Forensic Sci Int Genet,2016,25:214-226. doi:10.1016/j.fsigen.2016.09.007. |
4 | CHURCHILL J D, SCHMEDES S E, KING J L, et al. Evaluation of the Illumina® Beta Version ForenSeqTM DNA Signature Prep Kit for use in genetic profiling[J]. Forensic Sci Int Genet,2016,20:20-29. doi:10.1016/j.fsigen.2015.09.009. |
5 | GUO F, YU J, ZHANG L, et al. Massively parallel sequencing of forensic STRs and SNPs using the Illumina® ForenSeqTM DNA Signature Prep Kit on the MiSeq FGxTM Forensic Genomics System[J]. Forensic Sci Int Genet,2017,31:135-148. doi:10.1016/j.fsigen.2017.09.003. |
6 | 金荣. 浙江的少数民族[J].中国民族,1990(2):20. |
JIN R. Minorities in Zhejiang Province[J]. Zhongguo Minzu,1990(2):20. | |
7 | 巩五虎,薛少华,张岩,等. SiFaTM 23 Plex试剂盒(提取测试版)在汉族人群中的法医学调查[J].法医学杂志,2017,33(5):516-521. doi:10.3969/j.issn.1004-5619.2017.05.015. |
GONG W H, XUE S H, ZHANG Y, et al. Forensic investigation in Han population by SiFaTM 23 Plex Kit (beta version)[J]. Fayixue Zazhi,2017,33(5):516-521. | |
8 | ZHU B F, ZHANG Y D, SHEN C M, et al. Developmental validation of the AGCU 21+1 STR kit: A novel multiplex assay for forensic application[J]. Electrophoresis,2015,36(2):271-276. doi:10.1002/elps.201400333. |
9 | CRNJAC J, OZRETIĆ P, MERKAŠ S, et al. Investigator Argus X-12 study on the population of northern Croatia[J]. Genet Mol Biol,2017,40(1):80-83. doi:10.1590/1678-4685-GMB-2015-0261. |
10 | LUO Y, WU Y, QIAN E, et al. Population genetic analysis of 36 Y-chromosomal STRs yields comprehensive insights into the forensic features and phylogenetic relationship of Chinese Tai-Kadai-speaking Bouyei[J]. PLoS One,2019,14(11):e224601. doi:10.1371/journal.pone.0224601. |
11 | WARSHAUER D H, LIN D, HARI K, et al. STRait Razor: A length-based forensic STR allele-calling tool for use with second generation sequencing data[J]. Forensic Sci Int Genet,2013,7(4):409-417. doi:10.1016/j.fsigen.2013.04.005. |
12 | EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour,2010,10(3):564-567. doi:10.1111/j.1755-0998.2010.02847.x. |
13 | 刘亚举,张俊涛. 几款遗传学分析软件在法医生物统计中的应用[J].河南科技大学学报(医学版),2014,32(1):62-64. |
LIU Y J, ZHANG J T. Application of several genetic analysis softwares to forensic biological statistics[J]. Henan Keji Daxue Xuebao (Medical science),2014,32(1):62-64. | |
14 | PARSON W, BALLARD D, BUDOWLE B, et al. Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements[J]. Forensic Sci Int Genet,2016,22:54-63. doi:10.1016/j.fsigen.2016.01.009. |
15 | 刘宝年,张雅琪,邵诚臣,等. 二代测序技术在法医遗传学中的应用研究进展(2011~2016)[J].中国法医学杂志,2017,32(5):480-483,487. doi:10.03618/J.ISSN.1001-5728.2017.05.010. |
LIU B N, ZHANG Y Q, SHAO C C, et al. Research progress in the application of next-generation sequencing in forensic genetics[J]. Zhongguo Fayi-xue Zazhi,2017,32(5):480-483,487. | |
16 | CHURCHILL J D, CHANG J, GE J, et al. Blind study evaluation illustrates utility of the Ion PGMTM system for use in human identity DNA typing[J]. Croat Med J,2015,56(3):218-229. doi:10.3325/cmj.2015.56.218. |
[1] | Rui-yang TAO, Shou-yu WANG, Chun-yan YUAN, Ruo-cheng XIA, Cheng-tao LI. Application of SNaPshot Technology in Semen-Specific cSNP Genetic Marker [J]. Journal of Forensic Medicine, 2023, 39(5): 465-470. |
[2] | Zhong-hua WANG, Shu-jin LI. Research Progress on Molecular Biology of Human Height Estimation [J]. Journal of Forensic Medicine, 2023, 39(5): 487-492. |
[3] | Qi ZHANG, He-miao ZHAO, Kang YANG, Jing CHEN, Rui-qin YANG, Chong WANG. Construction of an Analysis Model of mRNA Markers in Menstrual Blood Based on Naïve Bayes and Multivariate Logistic Regression Methods [J]. Journal of Forensic Medicine, 2023, 39(5): 447-451. |
[4] | Lu CHEN, Zhe ZHOU, Sheng-qi WANG. Process of Forensic Medicine in DNA Identification of Aged Human Remains [J]. Journal of Forensic Medicine, 2023, 39(5): 478-486. |
[5] | Chao XIAO, Dai-xin HUANG. General Formulas for Calculating Commonly Used Kinship Index [J]. Journal of Forensic Medicine, 2023, 39(3): 276-282. |
[6] | Zheng TAN, Guan-ju MA, Li-hong FU, Xiao-jing ZHANG, Qian WANG, Guang-ping FU, Qing-qing DU, Shu-jin LI. Identification Strategy of Biological Half Sibling Relationship [J]. Journal of Forensic Medicine, 2023, 39(3): 262-270. |
[7] | Yu-ting WANG, Qiang ZHU, Yu-han HU, Yi-fan WEI, Ting-yun HOU, Ji ZHANG. Calculation of the Paternity Index for the Alleged Father Related to the Child’s Mother [J]. Journal of Forensic Medicine, 2023, 39(3): 271-275. |
[8] | Hui CHEN, Ran LI, Yu ZANG, Jing-yi YANG, Ri-ga WU, Hong-yu SUN. Evaluation of Detection Efficiency for Trio Full Sibling Testing [J]. Journal of Forensic Medicine, 2023, 39(3): 247-253. |
[9] | Hai-xia LI, Hui CHEN, Ran LI, Yu ZANG, Hong-yu SUN. Analysis of Trio Half Sibling Testing [J]. Journal of Forensic Medicine, 2023, 39(3): 254-261. |
[10] | Ran LI, Hong-yu SUN. Methods and Research Hotspots of Forensic Kinship Testing [J]. Journal of Forensic Medicine, 2023, 39(3): 231-239. |
[11] | Xuan TANG, Dan WEN, Chu-dong WANG, Ru-yi XU, Hong-tao JIA, Jie-nan LI, Bai-yi-la ZHALAGA. Application of Microhaplotypes in Sibling Kinship Testing [J]. Journal of Forensic Medicine, 2023, 39(3): 288-295. |
[12] | De-jian LÜ. Calculation of Likelihood Ratios for Incest Cases Using IBD Patterns [J]. Journal of Forensic Medicine, 2023, 39(3): 283-287. |
[13] | Xiao-yan MA, Hong-yu SUN, Qing LI. Research Progresses of Tri-Allelic Patterns in Autosomal STR in Forensic DNA Analysis [J]. Journal of Forensic Medicine, 2023, 39(3): 240-246. |
[14] | Meng-jie TONG, Ke ZHANG, Cai-xia LI, Guang-feng ZHANG, Wen-jie ZHANG, Lan YANG, Qing-tang HOU, Jing LIU. Application of Familial Y-STR Haplotype Mismatch Tolerance in Genealogy Inference [J]. Journal of Forensic Medicine, 2023, 39(3): 296-304. |
[15] | Hong-yan GAO, Guang-fu LIU, Jian WU, Peng-yu CHEN. Animal DNA Typing and Its Research Progress in Forensic Medicine [J]. Journal of Forensic Medicine, 2023, 39(2): 161-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||