Journal of Forensic Medicine ›› 2023, Vol. 39 ›› Issue (5): 433-440.DOI: 10.12116/j.issn.1004-5619.2022.420803
• Original Article • Previous Articles Next Articles
Yu-xin SUN1,2,3(), Xiao-juan GONG1,2,3, Xiu-li HAO1,2,3, Yu-xin TIAN1,2,3, Yi-ming CHEN1,2,3, Bao ZHANG1,2,3(
), Chun-xia YAN1,2,3(
)
Received:
2022-08-13
Online:
2023-11-24
Published:
2023-10-25
Contact:
Bao ZHANG,Chun-xia YAN
CLC Number:
Yu-xin SUN, Xiao-juan GONG, Xiu-li HAO, Yu-xin TIAN, Yi-ming CHEN, Bao ZHANG, Chun-xia YAN. Screening of Genes Co-Associated with Sudden Infant Death Syndrome and Infectious Sudden Death in Infancy and Bioinformatics Analysis of Their Regulatory Networks[J]. Journal of Forensic Medicine, 2023, 39(5): 433-440.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2022.420803
组织 | GSE70422 | GSE136992 | ||
---|---|---|---|---|
SIDS | 对照 | ISDI | 对照 | |
脑 | 10 | 8 | 10 | 9 |
心脏 | 8 | 9 | 10 | 10 |
肝 | 10 | 10 | 11 | 10 |
Tab. 1 Statistics of the samples in GSE70422 and
组织 | GSE70422 | GSE136992 | ||
---|---|---|---|---|
SIDS | 对照 | ISDI | 对照 | |
脑 | 10 | 8 | 10 | 9 |
心脏 | 8 | 9 | 10 | 10 |
肝 | 10 | 10 | 11 | 10 |
组织 | SIDS | ISDI | ||
---|---|---|---|---|
上调基因 | 下调基因 | 上调基因 | 下调基因 | |
脑 | 116 | 84 | 161 | 178 |
心脏 | 424 | 634 | 361 | 437 |
肝 | 235 | 362 | 176 | 293 |
Tab. 2 Statistics of the differentially expressed genes
组织 | SIDS | ISDI | ||
---|---|---|---|---|
上调基因 | 下调基因 | 上调基因 | 下调基因 | |
脑 | 116 | 84 | 161 | 178 |
心脏 | 424 | 634 | 361 | 437 |
肝 | 235 | 362 | 176 | 293 |
基因 | 组织 | Log2FC | P值 | ||
---|---|---|---|---|---|
SIDS | ISDI | SIDS | ISDI | ||
C9orf40 | 心脏 | -3.365 2 | -2.166 7 | 2.47×10-4 | 9.98×10-3 |
RDH10 | 心脏 | -3.683 5 | -2.697 5 | 5.47×10-4 | 7.93×10-3 |
ASTN1 | 心脏 | -4.185 8 | -3.815 6 | 5.98×10-4 | 5.45×10-4 |
H2AC6 | 心脏 | -4.027 1 | -3.810 5 | 6.55×10-4 | 1.07×10-3 |
NCDN | 心脏 | -4.901 4 | -3.672 7 | 1.33×10-3 | 4.67×10-3 |
NME5 | 心脏 | -2.750 0 | -3.063 3 | 1.76×10-3 | 5.16×10-4 |
SI | 心脏 | 3.333 3 | 2.388 9 | 1.84×10-3 | 9.14×10-3 |
ZNF815 | 心脏 | 2.516 7 | 2.701 9 | 2.58×10-3 | 2.70×10-3 |
GLYCTK | 心脏 | -2.825 7 | -2.754 5 | 2.62×10-3 | 4.29×10-4 |
HAUS5 | 心脏 | -3.145 5 | -2.569 2 | 4.37×10-3 | 6.38×10-3 |
KIAA0090 | 心脏 | -3.190 9 | -2.642 9 | 5.03×10-3 | 6.19×10-3 |
SRPK3 | 心脏 | -3.940 3 | -3.874 5 | 5.13×10-3 | 9.45×10-4 |
LOC645993 | 心脏 | 3.007 7 | 3.225 4 | 6.33×10-3 | 2.16×10-3 |
SMARCA5 | 心脏 | -2.852 5 | -3.492 4 | 6.56×10-3 | 2.45×10-3 |
FAM116A | 心脏 | -2.196 9 | -1.986 0 | 8.96×10-3 | 9.54×10-3 |
GRM1 | 心脏 | -2.324 5 | -2.591 3 | 9.49×10-3 | 9.29×10-4 |
KLF4 | 肝 | -2.543 5 | -2.137 9 | 1.02×10-3 | 3.93×10-3 |
C17orf65 | 肝 | -3.792 0 | -2.654 9 | 1.60×10-3 | 5.89×10-3 |
ITPRIP | 肝 | -3.334 7 | -2.295 0 | 4.54×10-3 | 9.50×10-3 |
Tab. 3 The common differentially expressed genes in SIDS and ISDI
基因 | 组织 | Log2FC | P值 | ||
---|---|---|---|---|---|
SIDS | ISDI | SIDS | ISDI | ||
C9orf40 | 心脏 | -3.365 2 | -2.166 7 | 2.47×10-4 | 9.98×10-3 |
RDH10 | 心脏 | -3.683 5 | -2.697 5 | 5.47×10-4 | 7.93×10-3 |
ASTN1 | 心脏 | -4.185 8 | -3.815 6 | 5.98×10-4 | 5.45×10-4 |
H2AC6 | 心脏 | -4.027 1 | -3.810 5 | 6.55×10-4 | 1.07×10-3 |
NCDN | 心脏 | -4.901 4 | -3.672 7 | 1.33×10-3 | 4.67×10-3 |
NME5 | 心脏 | -2.750 0 | -3.063 3 | 1.76×10-3 | 5.16×10-4 |
SI | 心脏 | 3.333 3 | 2.388 9 | 1.84×10-3 | 9.14×10-3 |
ZNF815 | 心脏 | 2.516 7 | 2.701 9 | 2.58×10-3 | 2.70×10-3 |
GLYCTK | 心脏 | -2.825 7 | -2.754 5 | 2.62×10-3 | 4.29×10-4 |
HAUS5 | 心脏 | -3.145 5 | -2.569 2 | 4.37×10-3 | 6.38×10-3 |
KIAA0090 | 心脏 | -3.190 9 | -2.642 9 | 5.03×10-3 | 6.19×10-3 |
SRPK3 | 心脏 | -3.940 3 | -3.874 5 | 5.13×10-3 | 9.45×10-4 |
LOC645993 | 心脏 | 3.007 7 | 3.225 4 | 6.33×10-3 | 2.16×10-3 |
SMARCA5 | 心脏 | -2.852 5 | -3.492 4 | 6.56×10-3 | 2.45×10-3 |
FAM116A | 心脏 | -2.196 9 | -1.986 0 | 8.96×10-3 | 9.54×10-3 |
GRM1 | 心脏 | -2.324 5 | -2.591 3 | 9.49×10-3 | 9.29×10-4 |
KLF4 | 肝 | -2.543 5 | -2.137 9 | 1.02×10-3 | 3.93×10-3 |
C17orf65 | 肝 | -3.792 0 | -2.654 9 | 1.60×10-3 | 5.89×10-3 |
ITPRIP | 肝 | -3.334 7 | -2.295 0 | 4.54×10-3 | 9.50×10-3 |
排名 | Betweenness | Degree | Closeness | EPC | MNC | |||||
---|---|---|---|---|---|---|---|---|---|---|
基因 | 评分 | 基因 | 评分 | 基因 | 评分 | 基因 | 评分 | 基因 | 评分 | |
1 | ITGA1 | 24 | RHOA | 4 | RHOA | 5.2 | RHOA | 3.1 | RHOA | 2 |
2 | RHOA | 22 | H2BC5 | 3 | ITGA1 | 5 | ITGA1 | 3.1 | H2BC5 | 2 |
3 | PAK2 | 22 | ITGA1 | 3 | PAK2 | 4.7 | PAK2 | 2.8 | ITGA1 | 2 |
4 | H2BC5 | 8 | PAK2 | 3 | FN1 | 4.2 | FN1 | 2.7 | HIST1H2AE | 2 |
5 | HIST1H2AC | 6 | HIST1H2AE | 2 | H2BC5 | 3.5 | H2BC5 | 2.5 | H2AFY | 2 |
Tab. 4 Top 5 hub genes by five topology analysis algorithms
排名 | Betweenness | Degree | Closeness | EPC | MNC | |||||
---|---|---|---|---|---|---|---|---|---|---|
基因 | 评分 | 基因 | 评分 | 基因 | 评分 | 基因 | 评分 | 基因 | 评分 | |
1 | ITGA1 | 24 | RHOA | 4 | RHOA | 5.2 | RHOA | 3.1 | RHOA | 2 |
2 | RHOA | 22 | H2BC5 | 3 | ITGA1 | 5 | ITGA1 | 3.1 | H2BC5 | 2 |
3 | PAK2 | 22 | ITGA1 | 3 | PAK2 | 4.7 | PAK2 | 2.8 | ITGA1 | 2 |
4 | H2BC5 | 8 | PAK2 | 3 | FN1 | 4.2 | FN1 | 2.7 | HIST1H2AE | 2 |
5 | HIST1H2AC | 6 | HIST1H2AE | 2 | H2BC5 | 3.5 | H2BC5 | 2.5 | H2AFY | 2 |
1 | KROUS H F, BECKWITH J B, BYARD R W, et al. Sudden infant death syndrome and unclassified sudden infant deaths: A definitional and diagnostic approach[J]. Pediatrics,2004,114(1):234-238. doi:10.1542/peds.114.1.234 . |
2 | MOON R Y, HORNE R S C, HAUCK F R. Sudden infant death syndrome[J]. Lancet,2007,370(9598):1578-1587. doi:10.1016/S0140-6736(07)61662-6 . |
3 | FARD D, LÄER K, ROTHÄMEL T, et al. Candidate gene variants of the immune system and sudden infant death syndrome[J]. Int J Legal Med,2016,130(4):1025-1033. doi:10.1007/s00414-016-1347-y . |
4 | MULHOLLAND K, TEMPLE B. Causes of death in children younger than 5 years in China in 2008[J]. Lancet,2010,376(9735):89. doi:10.1016/S0140-6736(10)61073-2 . |
5 | KEYWAN C, PODURI A H, GOLDSTEIN R D, et al. Genetic factors underlying sudden infant death syndrome[J]. Appl Clin Genet,2021,14:61-76. doi:10.2147/TACG.S239478 . |
6 | 胡丙杰,陈玉川,祝家镇,等. 婴幼儿猝死综合征心传导系统的免疫组化研究[J].法医学杂志,1996,12(4):193-194,199. |
HU B J, CHEN Y C, ZHU J Z, et al. Immunohistochemical study of the cardiac conduction system in sudden infant death syndrome[J]. Fayixue Zazhi,1996,12(4):193-194,199. | |
7 | CHENG J, VAN NORSTRAND D W, MEDEIROS-DOMINGO A, et al. Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current[J]. Circ Arrhythm Electrophysiol,2009,2(6):667-676. doi:10.1161/CIRCEP.109.891440 . |
8 | 李玲,黄光照,沈忆文,等. 婴儿猝死综合征的法医学鉴定[J].法医学杂志,2008,24(5):361-364. doi:10.3969/j.issn.1004-5619.2008.05.015 . |
LI L, HUANG G Z, SHEN Y W, et al. Sudden infant death syndrome (SIDS) and its forensic investigation[J]. Fayixue Zazhi,2008,24(5):361-364. | |
9 | FILIANO J J, KINNEY H C. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: The triple-risk model[J]. Biol Neonate,1994,65(3/4):194-197. doi:10.1159/000244052 . |
10 | NEUBAUER J, LECCA M R, RUSSO G, et al. Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases[J]. Eur J Hum Genet,2017,25(4):404-409. doi:10.1038/ejhg.2016.199 . |
11 | HAFKE A, SCHÜRMANN P, ROTHÄMEL T, et al. Evidence for an association of interferon gene variants with sudden infant death syndrome[J]. Int J Legal Med,2019,133(3):863-869. doi:10.1007/s00414-018-1974-6 . |
12 | BROWNSTEIN C A, GOLDSTEIN R D, THOMP-SON C H, et al. SCN1A variants associated with sudden infant death syndrome[J]. Epilepsia,2018,59(4):e56-e62. doi:10.1111/epi.14055 . |
13 | ALFELALI M, KHANDAKER G. Infectious causes of sudden infant death syndrome[J]. Paediatr Respir Rev,2014,15(4):307-311. doi:10.1016/j.prrv.2014.09.004 . |
14 | GOLDWATER P N. SIDS, prone sleep position and infection: An overlooked epidemiological link in current SIDS research? Key evidence for the “Infection Hypothesis”[J]. Med Hypotheses,2020,144:110114. doi:10.1016/j.mehy.2020.110114 . |
15 | MORRIS J A. The common bacterial toxins hypothesis of sudden infant death syndrome[J]. FEMS Immunol Med Microbiol,1999,25(1/2):11-17. doi:10.1111/j.1574-695X.1999.tb01322.x . |
16 | FERRANTE L, ROGNUM T O, VEGE Å, et al. Altered gene expression and possible immunodeficiency in cases of sudden infant death syndrome[J]. Pediatr Res,2016,80(1):77-84. doi:10.1038/pr.2016.45 . |
17 | FERRANTE L, OPDAL S H, NYGÅRD S, et al. Gene expression profile in cases of infectious death in infancy[J]. Pediatr Res,2021,89(3):483-487. doi:10.1038/s41390-020-0896-4 . |
18 | PHIPSON B, LEE S, MAJEWSKI I J, et al. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression[J]. Ann Appl Stat,2016,10(2):946-963. doi:10.1214/16-AOAS920 . |
19 | YU G C, WANG L G, HAN Y Y, et al. clusterProfiler: An R package for comparing biological themes among gene clusters[J]. OMICS,2012,16(5):284-287. doi:10.1089/omi.2011.0118 . |
20 | SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nu-cleic Acids Res,2019,47(D1):D607-D613. doi:10.1093/nar/gky1131 . |
21 | LAZZERINI P E, LAGHI-PASINI F, BOUTJDIR M, et al. Cardioimmunology of arrhythmias: The role of autoimmune and inflammatory cardiac channelopathies[J]. Nat Rev Immunol,2019,19(1):63-64. doi:10.1038/s41577-018-0098-z . |
22 | LAZZERINI P E, CAPECCHI P L, EL-SHERIF N, et al. Emerging arrhythmic risk of autoimmune and inflammatory cardiac channelopathies[J]. J Am Heart Assoc,2018,7(22):e010595. doi:10.1161/JAHA.118.010595 . |
23 | LAZZERINI P E, CAPECCHI P L, LAGHI-PASINI F. Long QT syndrome: An emerging role for inflammation and immunity[J]. Front Cardiovasc Med,2015,2:26. doi:10.3389/fcvm.2015.00026 . |
24 | HIGHET A R. An infectious aetiology of sudden infant death syndrome[J]. J Appl Microbiol,2008,105(3):625-635. doi:10.1111/j.1365-2672.2008.03747.x . |
25 | OPDAL S H. IL-10 gene polymorphisms in infectious disease and SIDS[J]. FEMS Immunol Med Microbiol,2004,42(1):48-52. doi:10.1016/j.femsim.2004.06.006 . |
26 | VEGE A, ROGNUM T O, ANESTAD G. IL-6 cerebrospinal fluid levels are related to laryngeal IgA and epithelial HLA-DR response in sudden infant death syndrome[J]. Pediatr Res,1999,45(6):803-809. doi:10.1203/00006450-199906000-00004 . |
27 | CHANG H. Cleave but not leave: Astrotactin proteins in development and disease[J]. IUBMB Life,2017,69(8):572-577. doi:10.1002/iub.1641 . |
28 | CHEN Q F, SHI F, HUANG T, et al. ASTN1 is associated with immune infiltrates in hepatocellular carcinoma, and inhibits the migratory and invasive capacity of liver cancer via the Wnt/β‑catenin signaling pathway[J]. Oncol Rep,2020,44(4):1425-1440. doi:10.3892/or.2020.7704 . |
29 | IWAKAWA R, KOHNO T, TOTOKI Y, et al. Expression and clinical significance of genes frequently mutated in small cell lung cancers defined by whole exome/RNA sequencing[J]. Carcinogenesis,2015,36(6):616-621. doi:10.1093/carcin/bgv026 . |
30 | DU Y, HU Y, WEN N, et al. Abnormal expression of TGFBR2, EGF, LRP10, and IQGAP1 is involved in the pathogenesis of coronary artery disease[J]. Rev Cardiovasc Med,2021,22(3):947-958. doi:10 . |
31083/j.rcm 2203103. | |
31 | MCMANUS D D, RONG J, HUAN T, et al. Messenger RNA and microRNA transcriptomic signatures of cardiometabolic risk factors[J]. BMC Genomics,2017,18(1):139. doi:10.1186/s12864-017-3533-9 . |
32 | FATIMA A, HOEBER J, SCHUSTER J, et al. Monoallelic and bi-allelic variants in NCDN cause neurodevelopmental delay, intellectual disability, and epilepsy[J]. Am J Hum Genet,2021,108(4):739-748. doi:10.1016/j.ajhg.2021.02.015 . |
33 | RAMIRO L, GARCÍA-BERROCOSO T, BRIANSÓ F, et al. Integrative multi-omics analysis to characterize human brain ischemia[J]. Mol Neurobiol,2021,58(8):4107-4121. doi:10.1007/s12035-021-02401-1 . |
34 | PANTARELLI C, PAN D, CHETWYND S, et al. The GPCR adaptor protein norbin suppresses the neutrophil-mediated immunity of mice to pneumococcal infection[J]. Blood Adv,2021,5(16):3076-3091. doi:10.1182/bloodadvances.2020002782 . |
35 | MISKE R, GROSS C C, SCHARF M, et al. Neurochondrin is a neuronal target antigen in autoimmune cerebellar degeneration[J]. Neurol Neuroimmunol Neuroinflamm,2016,4(1):e307. doi:10.1212/NXI.0000000000000307 . |
36 | ZHANG W, REN H, FANG F, et al. Neurochondrin antibody serum positivity in three cases of autoimmune cerebellar ataxia[J]. Cerebellum,2019,18(6):1137-1142. doi:10.1007/s12311-019-01048-y . |
37 | GHALEB A M, YANG V W. Krüppel-like factor 4 (KLF4): What we currently know[J]. Gene,2017,611:27-37. doi:10.1016/j.gene.2017.02.025 . |
38 | LUO W W, LIAN H, ZHONG B, et al. Krüppel-like factor 4 negatively regulates cellular antiviral immune response[J]. Cell Mol Immunol,2016,13(1):65-72. doi:10.1038/cmi.2014.125 . |
39 | 冯衍生,刘梅冬,刘瑛,等. Kruppel样因子4对内毒素所致IL-6基因表达的调控及机制研究[J].生物化学与生物物理进展,2009,36(10):1313-1318. doi:10.3724/ |
SP.J.1206.2009.00168. | |
FENG Y S, LIU M D, LIU Y, et al. Role of kruppel-like factor 4 in regulating the expression of IL-6 induced by LPS[J]. Shengwu Huaxue Yu Shengwu Wuli Jinzhan,2009,36(10):1313-1318. | |
40 | LIU J, YANG T, LIU Y, et al. Krüppel-like factor 4 inhibits the expression of interleukin-1 beta in lipopolysaccharide-induced RAW264.7 macrophages[J]. FEBS Lett,2012,586(6):834-840. doi:10.1016/j.febslet.2012.02.003 . |
41 | LIU J, ZHANG H, LIU Y, et al. KLF4 regulates the expression of interleukin-10 in RAW264.7 macrophages[J]. Biochem Biophys Res Commun,2007,362(3):575-581. doi:10.1016/j.bbrc.2007.07.157 . |
42 | YOSHIDA T, HAYASHI M. Role of Krüppel-like factor 4 and its binding proteins in vascular disease[J]. J Atheroscler Thromb,2014,21(5):402-413. doi:10 . |
5551/jat.23044. | |
43 | BAGNALL R D, WEINTRAUB R G, INGLES J, et al. A prospective study of sudden cardiac death among children and young adults[J]. N Engl J Med,2016,374(25):2441-2452. doi:10.1056/NEJMoa1 510687 . |
44 | LAPPALAINEN P, KOTILA T, JÉGOU A, et al. Biochemical and mechanical regulation of actin dynamics[J]. Nat Rev Mol Cell Biol,2022,23(12):836-852. doi:10.1038/s41580-022-00508-4 . |
45 | 黄润业,亓兰达,陈国参,等. 免疫抑制剂霉酚酸的研究及产业化进展[J].微生物学报,2021,61(10):3010-3025. doi:10.13343/j.cnki.wsxb.20200786 . |
HUANG R Y, QI L D, CHEN G C, et al. Research and industrialization progress of immunosuppressant mycophenolic acid[J]. Weishengwu Xuebao,2021,61(10):3010-3025. | |
46 | ZHOU J, DONG S, WANG P, et al. Identification of nine mRNA signatures for sepsis using random forest[J]. Comput Math Methods Med,2022,2022:5650024. doi:10.1155/2022/5650024 . |
47 | ECKENSTALER R, HAUKE M, BENNDORF R A. A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology[J]. Biochem Pharmacol,2022,206:115321. doi:10.1016/j.bcp.2022.115321 . |
48 | CAI A, LI L, ZHOU Y. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system[J]. J Hypertens,2016,34(1):3-10. doi:10 . |
1097/HJH.0000000000000768. | |
49 | BROS M, HAAS K, MOLL L, et al. RhoA as a key regulator of innate and adaptive immunity[J]. Cells,2019,8(7):733. doi:10.3390/cells8070733 . |
50 | SHATTIL S J, KIM C, GINSBERG M H. The final steps of integrin activation: The end game[J]. Nat Rev Mol Cell Biol,2010,11(4):288-300. doi:10.1038/nrm2871 . |
51 | OKSALA N, PÄRSSINEN J, SEPPÄLÄ I, et al. Kindlin 3 (FERMT3) is associated with unstable atherosclerotic plaques, anti-inflammatory type Ⅱ ma-crophages and upregulation of beta-2 integrins in all major arterial beds[J]. Atherosclerosis,2015,242(1):145-154. doi:10.1016/j.atherosclerosis.2015.06.058 . |
52 | LI H, WANG Y, RONG S K, et al. Integrin α1 promotes tumorigenicity and progressive capacity of colorectal cancer[J]. Int J Biol Sci,2020,16(5):815-826. doi:10.7150/ijbs.37275 . |
[1] | Yong ZENG, Dong-hua ZOU, Ying FAN, Qing XU, Lu-yang TAO, Yi-jiu CHEN, Zheng-dong LI. Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics [J]. Journal of Forensic Medicine, 2023, 39(5): 471-477. |
[2] | Yu YANG, Fan-zhang LEI, Yu-you DONG, Jian-long MA, Qi-qiang SHI, Xue-song YE. Retrospective Analysis of Death Cases of Oral Diphenidol Hydrochloride Poisoning [J]. Journal of Forensic Medicine, 2023, 39(4): 393-398. |
[3] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[4] | Qin SU, Qian-ling CHEN, Wei-bin WU, Qing-qing XIANG, Cheng-liang YANG, Dong-fang QIAO, Zhi-gang LI. Metabonomics Analysis of Brain Stem Tissue in Rats with Primary Brain Stem Injury Caused Death [J]. Journal of Forensic Medicine, 2023, 39(4): 373-381. |
[5] | Xu-dong ZHANG, Yao-ru JIANG, Xin-rui LIANG, Tian TIAN, Qian-qian JIN, Xiao-hong ZHANG, Jie CAO, Qiu-xiang DU, Jun-hong SUN. Postmortem Interval Estimation Using Protein Chip Technology Combined with Multivariate Analysis Methods [J]. Journal of Forensic Medicine, 2023, 39(2): 115-120. |
[6] | Wu LONG, Peng-fei QU, Lin MA, Rui WANG, Yan-mei XI, Yu-hua LI, Sheng-jie NIE, Ting DUAN, Jin-liang DU, Xue TANG, Jing-feng ZHAO, Pu-ping LEI, Yue-bing WANG. Cytotoxicity of 4 Wild Mushrooms in a Case of Yunnan Sudden Unexplained Death [J]. Journal of Forensic Medicine, 2023, 39(2): 121-128. |
[7] | Jun-wei GAO, Yang LU, Yan-jun LI, Dong-hua ZOU, Guang-long HE, Yan-bin WANG. Survey on the Construction Status of Forensic Virtual Autopsy Laboratory and the Applicability of Laboratory Accreditation [J]. Journal of Forensic Medicine, 2023, 39(2): 186-192. |
[8] | Fang-Fang LIU, Hui WU, Wei WANG, Ying XIE. Changes of 1,5-AG in Vitreous Humor of Rabbit Cadavers with Hyperglycemic Metabolism [J]. Journal of Forensic Medicine, 2023, 39(1): 13-17. |
[9] | Zhi-ling TIAN, Ruo-lin WANG, Jian-hua ZHANG, Ping HUANG, Zhi-qiang QIN, Zheng-dong LI, He-wen DONG, Dong-hua ZOU, Mao-wen WANG, Zhuo LI, Lei WAN, Xiao-tian YU, Ning-guo LIU. Comparison of CT Values between Thrombus and Postmortem Clot Based on Cadaveric Pulmonary Angiography [J]. Journal of Forensic Medicine, 2023, 39(1): 7-12. |
[10] | Jia-yi WU, You-jia YU, Kai LI, Xin YIN, Han-ting FAN, Rong LI, Zhi-wei ZHANG, Wei TANG, Hui-jie HUANG, Feng CHEN. Report on Cardiac Gross Pathologic Measurements of Sudden Cardiac Death in Adults [J]. Journal of Forensic Medicine, 2023, 39(1): 1-6. |
[11] | Hui WU, Fang-fang LIU, Jun-da WU, Ying XIE. Research Progress on Estimation of Postmortem Interval Based on Ocular Tissues Structure [J]. Journal of Forensic Medicine, 2023, 39(1): 50-56. |
[12] | Tian-pu WU, Jian-long MA, Xin-biao LIAO, Dong-chuan ZHANG, Kai-jun MA, Yan-geng YU, Long CHEN. Research Progress on Molecular Changes in Pulmonary Hypoxia and Cause of Death Identification in Mechanical Asphyxia [J]. Journal of Forensic Medicine, 2023, 39(1): 57-65. |
[13] | Yu-qing JIA, Tian-qi WANG, Rui ZHAO, Bao-li ZHU, Zhi-peng CAO. Effects of Postmortem Hemolysis and Ultrafiltration on Creatinine Detection Results [J]. Journal of Forensic Medicine, 2022, 38(6): 697-701. |
[14] | Lan YANG, Xin WANG, Yong NIU. Research Progress of DNA-Based Technologies for Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2022, 38(6): 747-753. |
[15] | Cheng-dong MA, Qiu-ping WU, Qian-hao ZHAO, Zhi-qiang ZHAO, Kun YIN, Nan ZHOU, Sai-qun WU, Jian-ding CHENG. Research Progress on Sport-Related Sudden Cardiac Death [J]. Journal of Forensic Medicine, 2022, 38(5): 618-624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||