Journal of Forensic Medicine ›› 2025, Vol. 41 ›› Issue (2): 120-126.DOI: 10.12116/j.issn.1004-5619.2024.440404
• Topic on Forensic Identification of Poisoning • Previous Articles Next Articles
Shuai ZHANG(
), Hong-fei XU, Zhi-xiang ZHANG, Ying WANG, Shao-hua ZHU(
)
Received:2024-04-12
Online:2025-08-11
Published:2025-04-25
Contact:
Shao-hua ZHU
CLC Number:
Shuai ZHANG, Hong-fei XU, Zhi-xiang ZHANG, Ying WANG, Shao-hua ZHU. Research on Doxorubicin-Induced Cardiotoxicity Mechanism and Its Forensic Application[J]. Journal of Forensic Medicine, 2025, 41(2): 120-126.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2024.440404
| [1] | USMAN R M, RAZZAQ F, AKBAR A, et al. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance[J]. Asia Pac J Clin Oncol,2021,17(3):193-208. doi:10. 1111/ajco.13449 . |
| [2] | WALLACE K B, SARDÃO V A, OLIVEIRA P J. Mitochondrial determinants of doxorubicin-induced cardiomyopathy[J]. Circ Res,2020,126(7):926-941. doi:10.1161/circresaha.119.314681 . |
| [3] | CHRISTIDI E, BRUNHAM L R. Regulated cell death pathways in doxorubicin-induced cardiotoxi-city[J]. Cell Death Dis,2021,12(4):339. doi:10.1038/s41419-021-03614-x . |
| [4] | CARVALHO F S, BURGEIRO A, GARCIA R, et al. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy[J]. Med Res Rev,2014,34(1):106-135. doi:10.1002/med.21280 . |
| [5] | SANGWENI N F, GABUZA K, HUISAMEN B, et al. Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: A graphical representation[J]. Arch Toxicol,2022,96(6):1541-1550. doi:10.1007/s00204-022-03262-w . |
| [6] | ARMSTRONG J, DASS C R. Doxorubicin action on mitochondria: Relevance to osteosarcoma therapy?[J]. Curr Drug Targets,2018,19(5):432-438. doi:10.2174/1389450116666150416115852 . |
| [7] | DENG Y, NGO D T M, HOLIEN J K, et al. Mitochondrial dynamin-related protein Drp1: A new player in cardio-oncology[J]. Curr Oncol Rep,2022,24(12):1751-1763. doi:10.1007/s11912-022-01333-w . |
| [8] | DING M, SHI R, FU F, et al. Paeonol protects against doxorubicin-induced cardiotoxicity by promoting Mfn2-mediated mitochondrial fusion through activating the PKCε-Stat3 pathway[J]. J Adv Res,2023,47:151-162. doi:10.1016/j.jare.2022.07.002 . |
| [9] | MITRY M A, EDWARDS J G. Doxorubicin induced heart failure: Phenotype and molecular mechanisms[J]. Int J Cardiol Heart Vasc,2016,10:17-24. doi:10. 1016/j.ijcha.2015.11.004 . |
| [10] | JONES R L, SWANTON C, EWER M S. Anthracycline cardiotoxicity[J]. Expert Opin Drug Saf,2006,5(6):791-809. doi:10.1517/14740338.5.6.791 . |
| [11] | 卢红玉,庞全瑭,刘淑萍. 静注阿霉素致过敏性休克1例[J].山东医药,2001,41(18):15. doi:10.3969/j.issn.1002-266X.2001.18.059 . |
| LU H Y, PANG Q T, LIU S P. Anaphylactic shock induced by intravenous doxorubicin: A case report[J]. Shandong Yiyao,2001,41(18):15. | |
| [12] | CONROY B, GUTHRIE W. Endocardial fibroelastosis associated with fatal adriamycin (doxorubicin) cardiomyopathy during treatment of Ewing’s sarcoma[J]. Scott Med J,1983,28(3):295-299. doi:10.1177/003693308302800317 . |
| [13] | 刘彤,敖学银,张文秀. 低累积量阿霉素致心源性死亡3例[J].中国肿瘤临床,1995,22(3):198. |
| LIU T, AO X Y, ZHANG W X. Cardiogenic death induced by low cumulative dose of doxorubicin: Three case reports[J]. Zhongguo Zhongliu Linchuang,1995,22(3):198. | |
| [14] | 吴晴,周小寒. 低累积量阿霉素致心源性死亡2例[J].癌症,1996,15(3):210,213. |
| WU Q, ZHOU X H. Cardiogenic death induced by low cumulative dose of doxorubicin: Two case reports[J]. Aizheng,1996,15(3):210,213. | |
| [15] | ZHANG P, LU H, WU Y, et al. COX5A alleviates doxorubicin-induced cardiotoxicity by suppressing oxidative stress, mitochondrial dysfunction and cardiomyocyte apoptosis[J]. Int J Mol Sci,2023,24(12):10400. doi:10.3390/ijms241210400 . |
| [16] | DIRKS-NAYLOR A J. The role of autophagy in doxorubicin-induced cardiotoxicity[J]. Life Sci,2013,93(24):913-916. doi:10.1016/j.lfs.2013.10.013 . |
| [17] | FERRANS V J, CLARK J R, ZHANG J, et al. Pathogenesis and prevention of doxorubicin cardiomyopathy[J]. Tsitologiia,1997,39(10):928-937. |
| [18] | ABDULLAH C S, ALAM S, AISHWARYA R, et al. Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration[J]. Sci Rep,2019,9(1):2002. doi:10.1038/s41598-018-37862-3 . |
| [19] | KONG C Y, GUO Z, SONG P, et al. Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: Oxidative stress and cell death[J]. Int J Biol Sci,2022,18(2):760-770. doi:10.7150/ijbs.65258 . |
| [20] | MOSTAFA A M, NAGI M N, RIKABI A C AL, et al. Protective effect of aminoguanidine against cardiovascular toxicity of chronic doxorubicin treatment in rats[J]. Res Commun Mol Pathol Pharmacol,1999,106(3):193-202. |
| [21] | DE OLIVEIRA B L, NIEDERER S. A biophysical systems approach to identifying the pathways of acute and chronic doxorubicin mitochondrial cardiotoxicity[J]. PLoS Comput Biol,2016,12(11):e1005214. doi:10.1371/journal.pcbi.1005214 . |
| [22] | YI X, BEKEREDJIAN R, DEFILIPPIS N J, et al. Transcriptional analysis of doxorubicin-induced cardiotoxicity[J]. Am J Physiol Heart Circ Physiol,2006,290(3):H1098-H1102. doi:10.1152/ajpheart. 00832.2005 . |
| [23] | AVERSANO R C, BOOR P J. Histochemical alterations of acute and chronic doxorubicin cardiotoxicity[J]. J Mol Cell Cardiol,1983,15(8):543-553. doi:10.1016/0022-2828(83)90330-9 . |
| [24] | ZHANG L, JIANG Q, WANG X, et al. Boesenbergia rotunda displayed anti-inflammatory, antioxidant and anti-apoptotic efficacy in doxorubicin-induced cardiotoxicity in rats[J]. Sci Rep,2023,13(1):11398. doi:10.1038/s41598-023-38560-5 . |
| [25] | ZHANG W, FAN Z, WANG F, et al. Tubeimoside I ameliorates doxorubicin-induced cardiotoxicity by upregulating SIRT3[J]. Oxid Med Cell Longev,2023,2023:9966355. doi:10.1155/2023/9966355 . |
| [26] | WANG Y, ZAN Y, HUANG Y, et al. NSUN2 alle-viates doxorubicin-induced myocardial injury through Nrf2-mediated antioxidant stress[J]. Cell Death Discov,2023,9(1):43. doi:10.1038/s41420-022-01294-w . |
| [27] | 李璐瑶,李小芬,秦安全,等. 阿霉素致心脏毒性模型的研究进展[J].毒理学杂志,2024,38(1):67-70. doi:10.16421/j.cnki.1002-3127.2024.01.004 . |
| LI L Y, LI X F, QIN A Q, et al. Research progress on doxorubicin-induced cardiotoxicity models[J]. Dulixue Zazhi,2024,38(1):67-70. | |
| [28] | ZHANG H, PAN J, HUANG S, et al. Hydrogen sulfide protects cardiomyocytes from doxorubicin-induced ferroptosis through the SLC7A11/GSH/GPx4 pathway by Keap1 S-sulfhydration and Nrf2 activation[J]. Redox Biol,2024,70:103066. doi:10. 1016/j.redox.2024.103066 . |
| [29] | XIAO Z, YU Z, CHEN C, et al. GAS-STING signaling plays an essential pathogenetic role in doxorubicin-induced cardiotoxicity[J]. BMC Pharmacol Toxicol,2023,24(1):19. doi:10.1186/s40360-022-00631-0 . |
| [30] | SUN X, MENG H, XIAO J, et al. Pretreatment of 3-MA prevents doxorubicin-induced cardiotoxicity through inhibition of autophagy initiation[J]. Toxicolo-gy,2023,490:153512. doi:10.1016/j.tox.2023.153512 . |
| [31] | LI D, LIU X, PI W, et al. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation[J]. Front Pharmacol,2021,12:808480. doi:10.3389/fphar.2021.808480 . |
| [32] | THAM Y K, BERNARDO B C, OOI J Y, et al. Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets[J]. Arch Toxicol,2015,89(9):1401-1438. doi:10.1007/s00204-015-1477-x . |
| [33] | WALLACE K B. Doxorubicin-induced cardiac mitochondrionopathy[J]. Pharmacol Toxicol,2003,93(3):105-115. doi:10.1034/j.1600-0773.2003.930301.x . |
| [34] | MUKHOPADHYAY P, RAJESH M, BÁTKAI S, et al. Role of superoxide, nitric oxide, and peroxy-nitrite in doxorubicin-induced cell death in vivo and in vitro [J]. Am J Physiol Heart Circ Physiol,2009,296(5):H1466-H1483. doi:10.1152/ajpheart.00795.2008 . |
| [35] | MALISZA K L, HASINOFF B B. Production of hydroxyl radical by iron(Ⅲ)-anthraquinone complexes through self-reduction and through reductive activation by the xanthine oxidase/hypoxanthine system[J]. Arch Biochem Biophys,1995,321(1):51-60. doi:10.1006/abbi.1995.1367 . |
| [36] | MAY P M, WILLIAMS G K, WILLIAMS D R. Solution chemistry studies of adriamycin-iron complexes present in vivo [J]. Eur J Cancer (1965),1980,16(9):1275-1276. doi:10.1016/0014-2964(80)90189-9 . |
| [37] | ZHANG Y Y, YI M, HUANG Y P. Oxymatrine ameliorates doxorubicin-induced cardiotoxicity in rats[J]. Cell Physiol Biochem,2017,43(2):626-635. doi:10.1159/000480471 . |
| [38] | YIN J, GUO J, ZHANG Q, et al. Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway[J]. Toxicol In Vitro,2018,51:1-10. doi:10.1016/j.tiv.2018.05.001 . |
| [39] | PARKER M A, KING V, HOWARD K P. Nuclear magnetic resonance study of doxorubicin binding to cardiolipin containing magnetically oriented phospholipid bilayers[J]. Biochim Biophys Acta,2001,1514(2):206-216. doi:10.1016/S0005-2736(01)00371-6 . |
| [40] | RENU K, ABILASH V G, TIRUPATHI PICHIAH P B, et al. Molecular mechanism of doxorubicin-induced cardiomyopathy — An update[J]. Eur J Pharmacol,2018,818:241-253. doi:10.1016/j.ejphar. 2017.10.043 . |
| [41] | ASHLEY N, POULTON J. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs[J]. Biochem Biophys Res Commun,2009,378(3):450-455. doi:10.1016/j.bbrc.2008.11.059 . |
| [42] | SONGBO M, LANG H, XINYONG C, et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity[J]. Toxicol Lett,2019,307:41-48. doi:10. 1016/j.toxlet.2019.02.013 . |
| [43] | AWAD H H, EL-DERANY M O, MANTAWY E M, et al. Comparative study on beneficial effects of vitamins B and D in attenuating doxorubicin induced cardiotoxicity in rats: Emphasis on calcium homeostasis[J]. Biomed Pharmacother,2021,140:111679. doi:10.1016/j.biopha.2021.111679 . |
| [44] | KIM S Y, KIM S J, KIM B J, et al. Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes[J]. Exp Mol Med,2006,38(5):535-545. doi:10.1038/emm.2006.63 . |
| [45] | BARTLETT J J, TRIVEDI P C, PULINILKUNNIL T. Autophagic dysregulation in doxorubicin cardiomyopathy[J]. J Mol Cell Cardiol,2017,104:1-8. doi:10.1016/j.yjmcc.2017.01.007 . |
| [46] | JOHNSON R, SHABALALA S, LOUW J, et al. Aspalathin reverts doxorubicin-induced cardiotoxicity through increased autophagy and decreased expression of p53/mTOR/p62 signaling[J]. Molecules,2017,22(10):1589. doi:10.3390/molecules22101589 . |
| [47] | MANCILLA T R, DAVIS L R, AUNE G J. Doxorubicin-induced p53 interferes with mitophagy in cardiac fibroblasts[J]. PLoS One,2020,15(9):e0238856. doi:10.1371/journal.pone.0238856 . |
| [48] | MCSWEENEY K M, BOZZA W P, ALTEROVITZ W L, et al. Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity[J]. Cell Death Discov,2019,5:102. doi:10.1038/s41420-019-0182-6 . |
| [49] | LI D L, WANG Z V, DING G, et al. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification[J]. Circulation,2016,133(17):1668-1687. doi:10.1161/CIRCULATIONAHA.115.01 7443 . |
| [50] | KONG L, ZHANG Y, NING J, et al. CaMKII orchestrates endoplasmic reticulum stress and apoptosis in doxorubicin-induced cardiotoxicity by regulating the IRE1α/XBP1s pathway[J]. J Cell Mol Med,2022,26(20):5303-5314. doi:10.1111/jcmm.17560 . |
| [51] | GUPTA V, KUMAR SINGH S, AGRAWAL V, et al. Role of ACE inhibitors in anthracycline-induced cardiotoxicity: A randomized, double-blind, placebo-controlled trial[J]. Pediatr Blood Cancer,2018,65(11):e27308. doi:10.1002/pbc.27308 . |
| [52] | UPSHAW J N, RUTHAZER R, MILLER K D, et al. Personalized decision making in early stage breast cancer: Applying clinical prediction models for anthracycline cardiotoxicity and breast cancer mortality demonstrates substantial heterogeneity of benefit-harm trade-off[J]. Clin Breast Cancer,2019,19(4):259-267.e1. doi:10.1016/j.clbc.2019.04.012 . |
| [53] | LI X, LIANG J, QU L, et al. Exploring the role of ferroptosis in the doxorubicin-induced chronic cardiotoxicity using a murine model[J]. Chem Biol Interact,2022,363:110008. doi:10.1016/j.cbi.2022. 110008 . |
| [54] | ROMÃO P V M, PALOZI R A C, GUARNIER L P, et al. Cardioprotective effects of Plinia cauliflora (Mart.) Kausel in a rabbit model of doxorubicin-induced heart failure[J]. J Ethnopharmacol,2019,242:112042. doi:10.1016/j.jep.2019.112042 . |
| [55] | 李薇,徐晓红. 蒽环类药物引发心脏毒性的研究进展[J].中南药学,2024,22(2):437-444. doi:10.7539/j.issn.1672-2981.2024.02.025 . |
| LI W, XU X H. Research advance in cardiotoxicity induced by anthracyclines[J]. Zhongnan Yaoxue,2024,22(2):437-444. | |
| [56] | KUNO A, HOSODA R, TSUKAMOTO M, et al. SIRT1 in the cardiomyocyte counteracts doxorubicin-induced cardiotoxicity via regulating histone H2AX[J]. Cardiovasc Res,2023,118(17):3360-3373. doi:10. 1093/cvr/cvac026 . |
| [57] | CHEN X, ZHANG Y, ZHU Z, et al. Protective effect of berberine on doxorubicin-induced acute hepatorenal toxicity in rats[J]. Mol Med Rep,2016,13(5):3953-3960. doi:10.3892/mmr.2016.5017 . |
| [58] | QIAN H, QIAN Y, LIU Y, et al. Identification of novel biomarkers involved in doxorubicin-induced acute and chronic cardiotoxicity, respectively, by integrated bioinformatics[J]. Front Cardiovasc Med,2022,9:996809. doi:10.3389/fcvm.2022.996809 . |
| [59] | PECORARO M, DEL PIZZO M, MARZOCCO S, et al. Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity[J]. Toxicol Appl Pharmacol,2016,293:44-52. doi:10.1016/j.taap.2016.01.006 . |
| [60] | 冯文周,赵香兰. HPLC法测定阿霉素及其代谢物阿霉素醇、阿霉素酮在肿瘤病人中的血浆、细胞内的药代动力学[J].中国临床药理学杂志,1992,8(2):92-101. doi:10.13699/j.cnki.1001-6821.1992.02.007 . |
| FENG W Z, ZHAO X L. Study on the plasma and cellular pharmacokinetics of adriamycin and its main metabolites adriamycinol, adriamycinone in cancer patients by HPLC method[J].Zhongguo Linchuang Yaolixue Zazhi,1992,8(2):92-101. | |
| [61] | 陈慧贞. 柔红霉素、阿霉素和4’-表阿霉素在人体血浆和组织的动力学[J].国外医学(药学分册),1984,11(4):252. doi:10.13220/j.cnki.jipr.1984.04.030 . |
| CHEN H Z. Pharmacokinetics of daunorubicin, doxorubicin, and 4’-epirubicin in human plasma and tissues[J]. Guowai Yixue (Yaoxue Fence),1984,11(4):252. | |
| [62] | 张晓声,任夏芒,李静玲. 高效液相色谱法测定血浆中阿霉素浓度的研究[J].山西职工医学院学报,1995,5(3):1-2. |
| ZHANG X S, REN X M, LI J L. Study on doxorubicin concentration in plasma using high performance liquid chromatography[J]. Shanxi Zhigong Yixueyuan Xuebao,1995,5(3):1-2. | |
| [63] | NERI B, CINI-NERI G, BANDINELLI M, et al. Doxorubicin and epirubicin cardiotoxicity: Experimental and clinical aspects[J]. Int J Clin Pharmacol Ther Toxicol,1989,27(5):217-221. |
| [64] | LI Y, TIAN C, HUANG S, et al. Potential biomarker of acute anthracycline-induced cardiotoxicity among children with acute lymphoblastic leukemia: Cardiac adriamycin-responsive protein[J]. J Cardiovasc Pharmacol,2023,82(6):489-495. doi:10.1097/fjc.0000000000001479 . |
| [65] | PONGPROT Y, SITTIWANGKUL R, CHAROENKWAN P, et al. Use of cardiac markers for monitoring of doxorubixin-induced cardiotoxicity in children with cancer[J]. J Pediatr Hematol Oncol,2012,34(8):589-595. doi:10.1097/MPH.0b013e31826faf44 . |
| [66] | LIANG S, BRUNDAGE R C, JACOBSON P A, et al. Pharmacokinetic-pharmacodynamic modelling of acute N-terminal pro B-type natriuretic peptide after doxorubicin infusion in breast cancer[J]. Br J Clin Pharmacol,2016,82(3):773-783. doi:10.1111/bcp.12989 . |
| [1] | Xuan-long CHEN, Qiang YUAN, Yong SUN, Die ZHANG, Jian-bin FU, Li-liang LI. Forensic Research Progress on Bongkrekic Acid Poisoning [J]. Journal of Forensic Medicine, 2025, 41(2): 111-119. |
| [2] | Yu-meng ZUO, Wei HAN, Jian-bo ZHANG, Tao LI. Molecular Mechanisms and Toxic Effects of Ketamine [J]. Journal of Forensic Medicine, 2025, 41(2): 127-135. |
| [3] | Zhuo LI, Yi-ru ZENG, Zhi-long SHU, Xue-hong SUN, Kui ZHANG. Research Status of Caenorhabditis elegans Model in Toxicology and Its Applications in Forensic Science [J]. Journal of Forensic Medicine, 2025, 41(2): 136-143. |
| [4] | Rong-shuai WANG, Si-zhe HUANG, Yun-yun WANG, Yan-fei DENG, Zi-jiao DING, Jie ZHANG, Yong LIU, Liang REN, Liang LIU. The Mechanism of Calcium Handling Proteins and NF-κB in Calcium Dyshomeostasis of Cardiomyocytes Caused by Acute MDMA Exposure [J]. Journal of Forensic Medicine, 2025, 41(2): 144-151. |
| [5] | Hao-wei WANG, Xiao-xing ZHANG, Gen-meng YANG, Shang-wen WANG, Xiao-feng ZENG. The Role of Ferroptosis in Hepatocyte Injury Induced by α-Amanitin [J]. Journal of Forensic Medicine, 2025, 41(2): 152-159. |
| [6] | Ze-qi LI, Lei XING, Hui-ge ZHANG, Li-rou HE, Jia-yi ZHANG, Jia-qi WANG, Shi-hao LIU, Wei-hong YANG. Analysis of Methadone-Related Poisoning Cases [J]. Journal of Forensic Medicine, 2025, 41(2): 160-167. |
| [7] | Yu-hao YUAN, Zhong-hao YU, Jia-xin ZHANG, Long-da MA, Shu-quan ZHAO, Ning-guo LIU, Rong-qi WU, Biao ZHANG, Xin-biao LIAO, Xin CHEN, Guang-long HE, Yi-wu ZHOU. Recommendation for Forensic Identification Guidelines on Insulin Overdoes [J]. Journal of Forensic Medicine, 2025, 41(2): 168-175. |
| [8] | Jiao-jiao JI, Xin WANG, Jia-man LIN, Duo-qi XU, Hui YAN, Min SHEN. Research Progress on the Application of MALDI-MSI in Hair Analysis [J]. Journal of Forensic Medicine, 2024, 40(6): 542-549. |
| [9] | Zhen-shuo GUO, Wen-jia DUAN, Yu LIU, Yi-ling TANG, Hui YAN. Research Progress on the Analysis of Anabolic Androgenic Steroids in Biological Samples Based on High Resolution Mass Spectrometry [J]. Journal of Forensic Medicine, 2024, 40(6): 533-541. |
| [10] | Wei-ping LÜ, Xin-biao LIAO, Li-ju REN, Xiao-ping KONG, Yan-chang CHEN, Ya-fei CHANG, Bin LUO. Construction and Evaluation of Intimate Partner Homicide Prediction Model [J]. Journal of Forensic Medicine, 2024, 40(6): 582-588. |
| [11] | Guo-qing GAO, Shuo YANG, Li-ying ZHOU, Shi-bei DU, Yan SHI. In Vivo Analysis of New Psychoactive Substances: Nitazenes [J]. Journal of Forensic Medicine, 2024, 40(6): 597-607. |
| [12] | Zhi YAN, Xun-ming JI, Xiao HE, Xiao-jing ZHANG, Lei WAN, Hong ZHANG, Mei TIAN, Bin CONG. Progress and Application Prospects of Forensic Molecular Imaging Technology in Living Individual Examination [J]. Journal of Forensic Medicine, 2024, 40(5): 476-483. |
| [13] | Jing LIU, Zheng WANG, Yi-ping HOU, Lin-chuan LIAO. The Impact of STR Mutations on Kinship Identification [J]. Journal of Forensic Medicine, 2024, 40(5): 484-491. |
| [14] | Qi-rui HAN, Wen-ji ZHANG, Hao-yang LI, Ying-chao LUO. Current Status and Prospects of Bloodstain Age Estimation Technology [J]. Journal of Forensic Medicine, 2024, 40(5): 468-475. |
| [15] | Xin ZHENG, Yue QIU, Zhi-gang LI, Qing-qing XIANG, Guan-san WANG, He SHI, Qu-yi XU, Peng SUI, Yan-bing MA, Chao LIU, Li-fang CHEN, Jian ZHAO. Identification of Antemortem and Postmortem Injuries in Nude Mice Based on Microbial Communities [J]. Journal of Forensic Medicine, 2024, 40(5): 430-438. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||