法医学杂志 ›› 2022, Vol. 38 ›› Issue (6): 754-762.DOI: 10.12116/j.issn.1004-5619.2021.410302
康圆博1(), 王思凡1, 陈婷君2, 郭亚东2, 张长全2(
)
收稿日期:
2021-02-28
发布日期:
2022-12-25
出版日期:
2022-12-28
通讯作者:
张长全
作者简介:
张长全,男,博士,讲师,主要从事法医病理学和法医昆虫学研究;E-mail:zcq1105@163.com
Yuan-bo KANG1(), Si-fan WANG1, Ting-jun CHEN2, Ya-dong GUO2, Chang-quan ZHANG2(
)
Received:
2021-02-28
Online:
2022-12-25
Published:
2022-12-28
Contact:
Chang-quan ZHANG
摘要:
外泌体是一种由细胞分泌的微小膜性囊泡,广泛存在于细胞外基质和多种体液中,携带蛋白质、脂类、信使RNA(messenger RNA,mRNA)和微小RNA(microRNA,miRNA)等多种生物功能分子,不仅在免疫学和肿瘤学领域发挥重要的生物学作用,而且在法医学领域也具有潜在应用价值。本文对外泌体的发现,产生和降解机制,生物学功能,分离和鉴定方法进行综述,总结其在法医学领域的研究和意义,探讨其在体液识别、个体识别、死亡时间推断中的应用,为外泌体在法医学中的实际应用提供思路。
中图分类号:
康圆博, 王思凡, 陈婷君, 郭亚东, 张长全. 外泌体的研究进展及其法医学意义[J]. 法医学杂志, 2022, 38(6): 754-762.
Yuan-bo KANG, Si-fan WANG, Ting-jun CHEN, Ya-dong GUO, Chang-quan ZHANG. Research Progress of Exosomes and Their Forensic Significance[J]. Journal of Forensic Medicine, 2022, 38(6): 754-762.
方法 | 优点 | 缺点 |
---|---|---|
离心法 | ||
差速离心法[ | 操作简单 | 操作用时较长,设备价格高昂,分离纯度低 |
密度梯度离心法 | 分离纯度高,理化性质保留[ | 操作复杂,分离效率低[ |
沉淀法 | ||
聚合物沉淀法 | 操作简单[ | 纯度和回收率低[ |
有机溶剂沉淀法[ | 廉价、操作简单、省时,理化性质保留 | 操作复杂 |
粒径分离法 | ||
超滤法[ | 设备廉价 | 过滤膜的堵塞会降低回收率 |
排阻色谱法 | 理化性质保留,避免外泌体聚集,分离纯度高于离心法[ | 操作用时较长[ |
免疫亲和法(磁分离法) | 特异性高,分离效率高[ | 反应试剂昂贵[ |
微流控技术 | 省时,有高通量潜力[ | 分离效率取决于装置原理[ |
表1 外泌体不同分离方法的优缺点
Tab. 1 Advantages and disadvantages of different methods for exosome isolation
方法 | 优点 | 缺点 |
---|---|---|
离心法 | ||
差速离心法[ | 操作简单 | 操作用时较长,设备价格高昂,分离纯度低 |
密度梯度离心法 | 分离纯度高,理化性质保留[ | 操作复杂,分离效率低[ |
沉淀法 | ||
聚合物沉淀法 | 操作简单[ | 纯度和回收率低[ |
有机溶剂沉淀法[ | 廉价、操作简单、省时,理化性质保留 | 操作复杂 |
粒径分离法 | ||
超滤法[ | 设备廉价 | 过滤膜的堵塞会降低回收率 |
排阻色谱法 | 理化性质保留,避免外泌体聚集,分离纯度高于离心法[ | 操作用时较长[ |
免疫亲和法(磁分离法) | 特异性高,分离效率高[ | 反应试剂昂贵[ |
微流控技术 | 省时,有高通量潜力[ | 分离效率取决于装置原理[ |
方法 | 检测内容 | 优点 | 缺点 |
---|---|---|---|
动态光散射技术[ | 大小 | 测定下限低,适用于单分散体系的测定 | 不适合测量大尺寸的外泌体样本,对多分散样本不准确 |
纳米颗粒跟踪分析技术 | 大小和体积分数 | 省时,可以实时观察外泌体;分辨率高于流式细胞仪,测量的直径下限可达30 nm[ | 操作复杂,很难从外泌体中分辨出被污染的蛋白质;摄像水平和检测阈值将影响外泌体的定量[ |
表2 外泌体不同鉴定方法的优缺点续表2
Tab. 2 Advantages and disadvantages of different methods for exosome identification Continued Tab. 2
方法 | 检测内容 | 优点 | 缺点 |
---|---|---|---|
动态光散射技术[ | 大小 | 测定下限低,适用于单分散体系的测定 | 不适合测量大尺寸的外泌体样本,对多分散样本不准确 |
纳米颗粒跟踪分析技术 | 大小和体积分数 | 省时,可以实时观察外泌体;分辨率高于流式细胞仪,测量的直径下限可达30 nm[ | 操作复杂,很难从外泌体中分辨出被污染的蛋白质;摄像水平和检测阈值将影响外泌体的定量[ |
1 | PEGTEL D M, GOULD S J. Exosomes[J]. Annu Rev Biochem,2019,88:487-514. doi:10.1146/annurev- biochem-013118-111902 . |
2 | ANEL A, GALLEGO-LLEYDA A, DE MIGUEL D, et al. Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease[J]. Cells,2019,8(2):154. doi:10.3390/cells 8020154 . |
3 | KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science,2020,367(6478):eaau6977. doi:10.1126/sci ence.aau6977 . |
4 | WOLF P. The nature and significance of platelet products in human plasma[J]. Br J Haematol,1967,13(3):269-288. doi:10.1111/j.1365-2141.1967.tb087 |
41 | x. |
5 | HARDING C, HEUSER J, STAHL P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes[J]. J Cell Biol,1983,97(2):329-339. doi:10.1083/jcb.97.2. 329 . |
6 | PAN B T, JOHNSTONE R M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor[J]. Cell,1983,33(3):967-978. doi:10.1016/0092-8674(83)90040-5 . |
7 | JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem,1987,262(19):9412-9420. |
8 | RAPOSO G, NIJMAN H W, STOORVOGEL W, et al. B lymphocytes secrete antigen-presenting vesi-cles[J]. J Exp Med,1996,183(3):1161-1172. doi:10 . |
1084/jem.183.3.1161. | |
9 | CORRADO C, RAIMONDO S, CHIESI A, et al. Exosomes as intercellular signaling organelles involved in health and disease: Basic science and clinical applications[J]. Int J Mol Sci,2013,14(3):5338-5366. doi:10.3390/ijms14035338 . |
10 | MINCIACCHI V R, FREEMAN M R, DI VIZIO D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes[J]. Semin Cell Dev Biol,2015,40:41-51. doi:10.1016/j.semcdb.2015.02.010 . |
11 | SAHU R, KAUSHIK S, CLEMENT C C, et al. Microautophagy of cytosolic proteins by late endosomes[J]. Dev Cell,2011,20(1):131-139. doi:10.1016/ |
j.devcel.2010.12.003. | |
12 | RECORD M. Intercellular communication by exosomes in placenta: A possible role in cell fusion?[J]. Placenta,2014,35(5):297-302. doi:10.1016/j.placenta. 2014.02.009 . |
13 | YELLON D M, DAVIDSON S M. Exosomes: Nanoparticles involved in cardioprotection?[J]. Circ Res,2014,114(2):325-332. doi:10.1161/CIRCRESA HA.113.300636 . |
14 | HENNE W M, BUCHKOVICH N J, EMR S D. The ESCRT pathway[J]. Dev Cell,2011,21(1):77-91. doi:10.1016/j.devcel.2011.05.015 . |
15 | HURLEY J H. ESCRTs are everywhere[J]. EMBO J,2015,34(19):2398-2407. doi:10.15252/embj.20159 2484 . |
16 | CASTRO B M, PRIETO M, SILVA L C. Ceramide: A simple sphingolipid with unique biophysical properties[J]. Prog Lipid Res,2014,54:53-67. doi:10.1016/j.plipres.2014.01.004 . |
17 | VAN NIEL G, D’ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesi-cles[J]. Nat Rev Mol Cell Biol,2018,19(4):213-228. doi:10.1038/nrm.2017.125 . |
18 | ZHAO H, YANG L, BADDOUR J, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism[J]. Elife,2016,5:e10250. doi:10.7554/elife.10250 . |
19 | EITAN E, SUIRE C, ZHANG S, et al. Impact of lysosome status on extracellular vesicle content and release[J]. Ageing Res Rev,2016,32:65-74. doi:10 . |
1016/j.arr.2016.05.001. | |
20 | CLAYTON A, HARRIS C L, COURT J, et al. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59[J]. Eur J Immunol,2003,33(2):522-531. doi:10.1002/immu.200310028 . |
21 | IMAI T, TAKAHASHI Y, NISHIKAWA M, et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice[J]. J Extracell Vesicles,2015,4:26238. doi:10.3402/jev.v4.26238 . |
22 | VLASSOV A V, MAGDALENO S, SETTERQUIST R, et al. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta,2012,1820(7):940-948. doi:10.1016/j.bbagen.2012.03.017 . |
23 | CASERTA S, GHEZZI P. Release of redox enzymes and micro-RNAs in extracellular vesicles, during infection and inflammation[J]. Free Radic Biol Med,2021,169:248-257. doi:10.1016/j.freeradbiomed.2021. 04.010 . |
24 | MITTELBRUNN M, GUTIÉRREZ-VÁZQUEZ C, VILLARROYA-BELTRI C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells[J]. Nat Commun,2011,2:282. doi:10.1038/ncomms1285 . |
25 | VALADI H, EKSTRÖM K, BOSSIOS A, et al. Exosome-mediated transfer of mRNAs and micro-RNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol,2007,9(6):654-659. doi:10.1038/ncb1596 . |
26 | HUANG Z, XU A. Adipose extracellular vesicles in intercellular and inter-organ crosstalk in metabolic health and diseases[J]. Front Immunol,2021,12:608680. doi:10.3389/fimmu.2021.608680 . |
27 | FAN T, SUN N, HE J. Exosome-derived lncRNAs in lung cancer[J]. Front Oncol,2020,10:1728. doi:10.3389/fonc.2020.01728 . |
28 | HEWSON C, CAPRARO D, BURDACH J, et al. Extracellular vesicle associated long non-coding RNAs functionally enhance cell viability[J]. Non Coding RNA Res,2016,1(1):3-11. doi:10.1016/j.ncrna.2016.06.001 . |
29 | ZHANG Y, LIU Y, LIU H, et al. Exosomes: Biogenesis, biologic function and clinical potential[J]. Cell Biosci,2019,9:19. doi:10.1186/s13578-019-0282-2 . |
30 | AYALA-MAR S, DONOSO-QUEZADA J, GALLO-VILLANUEVA R C, et al. Recent advances and challenges in the recovery and purification of cellular exosomes[J]. Electrophoresis,2019,40(23/24):3036-3049. doi:10.1002/elps.201800526 . |
31 | LIVSHITS M A, KHOMYAKOVA E, EVTUSHEN-KO E G, et al. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol[J]. Sci Rep,2015,5:17319. doi: |
33 | 1038/srep17319. |
32 | LI P, KASLAN M, LEE S H, et al. Progress in exosome isolation techniques[J]. Theranostics,2017,7(3):789-804. doi:10.7150/thno.18133 . |
35 | DEREGIBUS M C, FIGLIOLINI F, D’ANTICO S, et al. Charge-based precipitation of extracellular vesicles[J]. Int J Mol Med,2016,38(5):1359-1366. doi:10.3892/ijmm.2016.2759 . |
34 | 王耀杰,颜晰,赵立波,等. 外泌体分离和纯化方法研究进展[J].中华检验医学杂志,2021,44(2):167-170. doi:10.3760/cma.j.cn114452-20200525-00497 . |
WANG Y J, YAN X, ZHAO L B, et al. Advances in methods for isolation and purification of exosomes[J]. Zhonghua Jianyan Yixue Zazhi,2021,44(2):167-170. | |
37 | GUAN S, YU H, YAN G, et al. Characterization of urinary exosomes purified with size exclusion chromatography and ultracentrifugation[J]. J Proteome Res,2020,19(6):2217-2225. doi:10.1021/acs.jproteo me.9b00693 . |
36 | XU H, LIAO C, ZUO P, et al. Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes[J]. Anal Chem,2018,90(22):13451-13458. doi:10.1021/acs.analchem.8b03 272 . |
39 | KANWAR S S, DUNLAY C J, SIMEONE D M, et al. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes[J]. Lab Chip,2014,14(11):1891-1900. doi:10.1039/c4lc00136b . |
38 | MARTÍNEZ-GREENE J A, HERNÁNDEZ-ORTEGA K, QUIROZ-BAEZ R, et al. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography[J]. J Extracell Vesicles,2021,10(6):e12087. doi:10.1002/ jev2.12087 . |
41 | THÉRY C, WITWER K W, AIKAWA E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles,2018,7(1):1535750. doi:10.1080/20013078.2018.153575 . |
40 | SHAO H, IM H, CASTRO C M, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev,2018,118(4):1917-1950. doi:10.1021/acs. chemrev.7b00534 . |
43 | WU Y, DENG W, KLINKE D J 2 ND. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers[J]. Analyst,2015,140(19):6631-6642. doi:10.1039/c5an |
00688k. | |
42 | XU R, GREENING D W, ZHU H J, et al. Extracellular vesicle isolation and characterization: Toward clinical application[J]. J Clin Invest,2016,126(4):1152-1162. doi:10.1172/JCI81129 . |
45 | POSPICHALOVA V, SVOBODA J, DAVE Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer[J]. J Extracell Vesi-cles,2015,4:25530. doi:10.3402/jev.v4.25530 . |
44 | ZHANG Y, BI J, HUANG J, et al. Exosome: A review of its classification, isolation techniques, sto-rage, diagnostic and targeted therapy applications[J]. Int J Nanomedicine,2020,15: 6917-6934. doi:10.2147/ IJN.S264498 . |
47 | SZATANEK R, BAJ-KRZYWORZEKA M, ZIMOCH J, et al. The methods of choice for extracellular vesicles (EVs) characterization[J]. Int J Mol Sci,2017,18(6):1153. doi:10.3390/ijms18061153 . |
46 | MAAS S L N, DE VRIJ J, VAN DER VLIST E J, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics[J]. J Control Release,2015,200:87-96. doi:10.1016/j.jconrel.2014.12.041 . |
49 | HUANG X, YUAN T, TSCHANNEN M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing[J]. BMC Genomics,2013,14:319. doi:10.1186/1471-2164-14-319 . |
48 | GONZALES P A, PISITKUN T, HOFFERT J D, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes[J]. J Am Soc Nephrol,2009,20(2):363-379. doi:10.1681/ASN.2008040406 . |
51 | BAHN J H, ZHANG Q, LI F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem,2015,61(1):221-230. doi:10.1373/clinchem.2014.230433 . |
50 | PARCHEM J, PAPANNA R, YANG S, et al. 89: Exploring the diagnostic and prognostic potential of amniotic fluid exosomes in twin-twin transfusion syndrome (TTTS)[J]. Am J Obstet Gynecol,2017,216(S1):S63-S64. doi:10.1016/j.ajog.2016.11.977 . |
53 | YAGI Y, OHKUBO T, KAWAJI H, et al. Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes[J]. Neurosci Lett,2017,636:48-57. doi:10.1016/j.neulet.2016.10.042 . |
52 | WU C X, LIU Z F. Proteomic profiling of sweat exosome suggests its involvement in skin immuni-ty[J]. J Investig Dermatol,2018,138(1):89-97. doi:10.1016/j.jid.2017.05.040 . |
55 | YANG C, GUO W B, ZHANG W S, et al. Comprehensive proteomics analysis of exosomes derived from human seminal plasma[J]. Andrology,2017,5(5):1007-1015. doi:10.1111/andr.12412 . |
54 | HOSHINO A, KIM H S, BOJMAR L, et al. Extracellular vesicle and particle biomarkers define multiple human cancers[J]. Cell,2020,182(4):1044-1061.e18. doi:10.1016/j.cell.2020.07.009 . |
57 | DUTTA S, KUMAR S, HYETT J, et al. Molecular targets of aspirin and prevention of preeclampsia and their potential association with circulating extracellular vesicles during pregnancy[J]. Int J Mol Sci,2019,20(18):4370. doi:10.3390/ijms20184370 . |
56 | LU Q, ZHANG J, ALLISON R, et al. Identification of extracellular delta-catenin accumulation for prostate cancer detection[J]. Prostate,2009,69(4):411-418. doi:10.1002/pros.20902 . |
59 | MOON P G, LEE J E, YOU S, et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy[J]. Proteomics,2011,11(12):2459-2475. doi:10.1002/pmic.201000443 . |
58 | MACHIDA T, TOMOFUJI T, EKUNI D, et al. MicroRNAs in salivary exosome as potential biomarkers of aging[J]. Int J Mol Sci,2015,16(9):21294-21309. doi:10.3390/ijms160921294 . |
61 | 董梦茹. 重度烧伤休克期大鼠血清外泌体的提取鉴定及miRNA表达谱分析[D].广州:南方医科大学,2020. |
DONG M R. Extraction and identification of serum exosomes and analysis of miRNA expression profiles in severe burns rats during shock stage[D]. Guangzhou: Southern Medical University,2020. | |
60 | SAMANTA L, PARIDA R, DIAS T R, et al. The enigmatic seminal plasma: A proteomics insight from ejaculation to fertilization[J]. Reprod Biol Endocrinol,2018,16(1):41. doi:10.1186/s12958-018-0358-6 . |
63 | 马晓楠,路陆,黄琰潼,等. 外泌体microRNA在心血管疾病中的研究进展及其法医学应用前景[J].法医学杂志,2022,38(2):258-262. doi:10.12116/j.issn.1004-5619.2020.400911 . |
MA X N, LU L, HUANG Y T, et al. Research progress of exosomal microRNA in cardiovascular disease and its forensic application prospects[J]. Fayi-xue Zazhi,2022,38(2):258-262. | |
62 | HUANG Y, CHENG L, TURCHINOVICH A, et al. Influence of species and processing parameters on recovery and content of brain tissue-derived extracellular vesicles[J]. J Extracell Vesicles,2020,9(1):1785746. doi:10.1080/20013078.2020.1785746 . |
65 | HARISCHANDRA D S, GHAISAS S, ROKAD D, et al. Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson’s disease: Relevance to α-synuclein misfolding in metal neurotoxicity[J]. Neurotoxicology,2018,64:267-277. doi:10.1016/j.neuro. 2017.04.007 . |
64 | OGAWA Y, KANAI-AZUMA M, AKIMOTO Y, et al. Exosome-like vesicles in Gloydius blomhoffii blomhoffii venom[J]. Toxicon,2008,51(6):984-993. doi:10.1016/j.toxicon.2008.02.003 . |
67 | SOUZA-IMBERG A, CARNEIRO S M, GIAN-NOTTI K C, et al. Origin and characterization of small membranous vesicles present in the venom of Crotalus durissus terrificus [J]. Toxicon,2017,136:27-33. doi:10.1016/j.toxicon.2017.06.013 . |
66 | CHO Y E, MEZEY E, HARDWICK J P, et al. Increased ethanol-inducible cytochrome P450-2E1 and cytochrome P450 isoforms in exosomes of alcohol-exposed rodents and patients with alcoholism through oxidative and endoplasmic reticulum stress[J]. Hepatol Commun,2017,1(7):675-690. doi:10.1002/hep4. 1066 . |
69 | WANG X, SUN L, ZHOU Y, et al. Heroin abuse and/or HIV infection dysregulate plasma exosomal miRNAs[J]. J Neuroimmune Pharmacol,2020,15(3):400-408. doi:10.1007/s11481-019-09892-9 . |
68 | 孟运乐. 甲基苯丙胺促使α-突触核蛋白传递至星形胶质细胞的相关病理损伤机制研究[D].广州:南方医科大学,2020. |
MENG Y L. Mechanism of pathological damage in astrocytes after alpha-synuclein transferred to astrocytes promoted by METH[D]. Guangzhou: Southern Medical University,2020. | |
71 | 郜峥翔,罗奇志,张亮,等. 大鼠血液外泌体中外源性γ-羟基丁酸的检测[J].法医学杂志,2022,38(2):212-216. doi:10.12116/j.issn.1004-5619.2021.410116 . |
GAO Z X, LUO Q Z, ZHANG L, et al. Detection of exogenous γ-hydroxybutyric acid in rat blood exosomes[J]. Fayixue Zazhi,2022,38(2):212-216. | |
70 | JANAS A M, SAPOŃ K, JANAS T, et al. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases[J]. Biochim Biophys Acta,2016,1858(6):1139-1151. doi:10.1016/j.bbam em.2016.02.011 . |
73 | TIAN F, SHEN Y, CHEN Z, et al. No significant difference between plasma miRNAs and plasma-derived exosomal miRNAs from healthy people[J]. Biomed Res Int,2017,2017:1304816. doi:10.1155/2017/1304816 . |
72 | GRUZDEV S K, YAKOVLEV A A, DRUZHKOVA T A, et al. The missing link: How exosomes and miRNAs can help in bridging psychiatry and molecular biology in the context of depression, bipolar disorder and schizophrenia[J]. Cell Mol Neurobiol,2019,39(6):729-750. doi:10.1007/s10571-019-00684-6 . |
75 | LIU J, SU B. Integrated analysis supports ATXN1 as a schizophrenia risk gene[J]. Schizophr Res,2018,195:298-305. doi:10.1016/j.schres.2017.10.010 . |
74 | RAISZADEH M M, ROSS M M, RUSSO P S, et al. Proteomic analysis of eccrine sweat: Implications for the discovery of schizophrenia biomarker proteins[J]. J Proteome Res,2012,11(4):2127-2139. doi:10.1021/pr2007957 . |
77 | TSILIONI I, THEOHARIDES T C. Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1β[J]. J Neuroinflammation,2018,15(1):239. doi:10.1186/s12974-018-1275-5 . |
[1] | 李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500. |
[2] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[3] | 安永明, 张志威, 关国鹏. 肺挫裂伤合并多发假性囊肿法医学鉴定1例[J]. 法医学杂志, 2023, 39(5): 519-522. |
[4] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[5] | 马安全, 马晓晨, 方俊杰. 会阴部外伤致睾丸萎缩鉴定1例[J]. 法医学杂志, 2023, 39(5): 528-530. |
[6] | 夏晴, 陈捷敏. 垂直压缩型踝关节骨折成伤机制分析2例[J]. 法医学杂志, 2023, 39(5): 525-527. |
[7] | 曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477. |
[8] | 李强, 付志浩, 孙晓东, 黄效宇. 利用CT扫描测量法判断眼球内陷残疾评定1例[J]. 法医学杂志, 2023, 39(5): 516-518. |
[9] | 朱琨, 高东, 范利华. 腓骨骨纤维结构不良并骨折因果关系鉴定1例[J]. 法医学杂志, 2023, 39(5): 522-524. |
[10] | 林丹丹, 赵莉莉, 施芳芳, 陈雅婷, 潘国南. 二次交通伤致伤方式探讨1例[J]. 法医学杂志, 2023, 39(5): 530-534. |
[11] | 郝虹霞, 陈捷敏, 王荣荣, 俞晓英, 王萌, 周智露, 盛延良, 夏文涛. 虚拟现实-图像视觉诱发电位用于客观评定单眼屈光不正视觉损伤的价值[J]. 法医学杂志, 2023, 39(4): 382-387. |
[12] | 宋爱英, 赵翌博, 杨利君. 液相色谱-串联质谱法检验氟乙酸致死1例[J]. 法医学杂志, 2023, 39(4): 428-430. |
[13] | 张韦屹, 周旻. 岩斜区脑膜瘤切除术后长期昏迷医疗损害鉴定1例[J]. 法医学杂志, 2023, 39(4): 421-423. |
[14] | 白洁, 孙晶, 程晓光, 刘凡, 刘华, 王旭. 基于YOLOv3算法的肋骨骨折诊断模型的构建及应用[J]. 法医学杂志, 2023, 39(4): 343-349. |
[15] | 范飞, 武娟, 邓振华. 听力学客观检测技术在法医临床学中的应用进展[J]. 法医学杂志, 2023, 39(4): 360-366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||