Journal of Forensic Medicine ›› 2022, Vol. 38 ›› Issue (1): 31-39.DOI: 10.12116/j.issn.1004-5619.2021.411001
Special Issue: 水中尸体研究专题
• Original Articles • Previous Articles Next Articles
Yong-zheng ZHU1,2(), Ji ZHANG2(
), Qi CHENG2,3, Hui-xiao YU2,4, Kai-fei DENG2, Jian-hua ZHANG2, Zhi-qiang QIN2, Jian ZHAO5, Jun-hong SUN1(
), Ping HUANG1,2(
)
Received:
2021-10-04
Online:
2022-02-25
Published:
2022-02-28
Contact:
Jun-hong SUN,Ping HUANG
CLC Number:
Yong-zheng ZHU, Ji ZHANG, Qi CHENG, Hui-xiao YU, Kai-fei DENG, Jian-hua ZHANG, Zhi-qiang QIN, Jian ZHAO, Jun-hong SUN, Ping HUANG. Comparison among Four Deep Learning Image Classification Algorithms in AI-based Diatom Test[J]. Journal of Forensic Medicine, 2022, 38(1): 31-39.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2021.411001
最优模型 | 训练集 | 验证集 | 迭代次数 | ||
---|---|---|---|---|---|
准确率/% | 损失函数值 | 准确率/% | 损失函数值 | ||
VGG16 | 99.99 | 0.001 | 96.25 | 0.074 | 89 |
ResNet50 | 99.99 | 0.001 | 94.00 | 0.143 | 70 |
InceptionV3 | 99.77 | 0.012 | 98.91 | 0.042 | 45 |
Inception-ResNet-V2 | 99.65 | 0.043 | 97.50 | 0.176 | 46 |
Tab. 1 Optimal performance of four models
最优模型 | 训练集 | 验证集 | 迭代次数 | ||
---|---|---|---|---|---|
准确率/% | 损失函数值 | 准确率/% | 损失函数值 | ||
VGG16 | 99.99 | 0.001 | 96.25 | 0.074 | 89 |
ResNet50 | 99.99 | 0.001 | 94.00 | 0.143 | 70 |
InceptionV3 | 99.77 | 0.012 | 98.91 | 0.042 | 45 |
Inception-ResNet-V2 | 99.65 | 0.043 | 97.50 | 0.176 | 46 |
模型 | RR/% | PR/% | S/% | AR/% | F1分数 |
---|---|---|---|---|---|
VGG16 | 84.65 | 78.96 | 77.45 | 81.05 | 0.82 |
ResNet50 | 55.35 | 81.04 | 87.05 | 71.20 | 0.66 |
InceptionV3 | 89.80 | 92.58 | 92.80 | 91.30 | 0.91 |
Inception-ResNet-V2 | 72.35 | 87.22 | 89.40 | 80.88 | 0.79 |
Tab. 2 Diatom identification performance parameters of four models
模型 | RR/% | PR/% | S/% | AR/% | F1分数 |
---|---|---|---|---|---|
VGG16 | 84.65 | 78.96 | 77.45 | 81.05 | 0.82 |
ResNet50 | 55.35 | 81.04 | 87.05 | 71.20 | 0.66 |
InceptionV3 | 89.80 | 92.58 | 92.80 | 91.30 | 0.91 |
Inception-ResNet-V2 | 72.35 | 87.22 | 89.40 | 80.88 | 0.79 |
1 | World Health Organization. Global report on drowning: Preventing a leading killer[R/OL]. (2014-09-17)[2021-09-21]. . |
2 | SZPILMAN D, MORGAN P J. Management for the drowning patient[J]. Chest,2021,159(4):1473-1483. doi:10.1016/j.chest.2020.10.007 . |
3 | 李棨,马开军,张晓东,等. 水中尸体肺组织硅藻检验与死因分析[J].法医学杂志,2011,27(5):324-326,333. doi:10.3969/j.issn.1004-5619.2011.05.002 . |
LI Q, MA K J, ZHANG X D, et al. Diatom test in lung tissue of corpses in water and causes of death[J]. Fayixue Zazhi,2011,27(5):324-326,333. | |
4 | CARBALLEIRA R, VIEIRA D N, FEBRERO-BANDE M, et al. A valid method to determine the site of drowning[J]. Int J Legal Med,2018,132(2):487-497. doi:10.1007/s00414-017-1708-1 . |
5 | PIETTE M H A, DE LETTER E A. Drowning: Still a difficult autopsy diagnosis[J]. Forensic Sci Int,2006,163(1/2):1-9. doi:10.1016/j.forsciint.2004.10.027 . |
6 | LUNETTA P, PENTTILÄ A, HÄLLFORS G. Scanning and transmission electron microscopical evidence of the capacity of diatoms to penetrate the alveolo-capillary barrier in drowning[J]. Int J Legal Med,1998,111(5):229-237. doi:10.1007/s004140050159 . |
7 | ZHANG P, KANG X, ZHANG S, et al. The length and width of diatoms in drowning cases as the evidence of diatoms penetrating the alveoli-capillary barrier[J]. Int J Legal Med,2020,134(3):1037-1042. doi:10.1007/s00414-019-02164-4 . |
8 | LUDES B, COSTE M, NORTH N, et al. Diatom analysis in victim’s tissues as an indicator of the site of drowning[J]. Int J Legal Med,1999,112(3):163-166. doi:10.1007/s004140050224 . |
9 | SHEN X, LIU Y, XIAO C, et al. Analysis of false-positive results of diatom test in the diagnosis of drowning-would not be an impediment[J]. Int J Legal Med,2019,133(6):1819-1824. doi:10.1007/s00414-019-02021-4 . |
10 | BORTOLOTTI F, TAGLIARO F, MANETTO G. Objective diagnosis of drowning by the “diatom test” - A critical review[J]. Forensic Sci Rev,2004,16(2):135-148. |
11 | 周圆圆,曹永杰,杨越,等. 基于人工智能硅藻自动化识别系统的实际案例应用[J].法医学杂志,2020,36(2):239-242. doi:10.12116/j.issn.1004-5619.2020.02.017 . |
ZHOU Y Y, CAO Y J, YANG Y, et al. Application of artificial intelligence automatic diatom identification system in practical cases[J]. Fayixue Zazhi,2020,36(2):239-242. | |
12 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM,2017,60(6):84-90. doi:10.1145/3065386 . |
13 | ARESTA G, ARAÚJO T, KWOK S, et al. BACH: Grand challenge on breast cancer histology images[J]. Med Image Anal,2019,56:122-139. doi:10.1016/j.media.2019.05.010 . |
14 | HA Q S, LIU B, LIU F X. Identifying melanoma images using EfficientNet ensemble: Winning solution to the SIIM-ISIC melanoma classification challenge[J/OL]. (2020-10-11)[2021-09-21]. arXiv:2010. 05351v1. |
15 | ZHOU Y, CAO Y, HUANG J, et al. Research advances in forensic diatom testing[J]. Forensic Sci Res,2020,5(2):98-105. doi:10.1080/20961790. 2020.1718901 . |
16 | HU H, GU J Y, ZHANG Z, et al. Relation networks for object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE,2018:3588-3597. doi:10.1109/CVPR.2018.00378 . |
17 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE,2014:580-587. doi:10.1109/CVPR.2014.81 . |
18 | GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago:IEEE,2015:1440-1448. doi:10.1109/ICCV. 2015.169 . |
19 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell,2017,39(6):1137-1149. doi:10.1109/TPAMI.2016.2577031 . |
20 | YU W M, XUE Y, KNOOPS R, et al. Automated diatom searching in the digital scanning electron microscopy images of drowning cases using the deep neural networks[J]. Int J Leg Med,2021,135(2):497-508. doi:10.1007/s00414-020-02392-z . |
21 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL].(2015-04-10)[2021-09-21]. arXiv:. |
22 | SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-V 4, inception-ResNet and the impact of residual connections on learning[J/OL]. (2016-08-23)[2021-09-21]. arXiv:. |
23 | ZHOU Y Y, ZHANG J, HUANG J, et al. Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm[J]. Forensic Sci Int,2019,302:109922. doi:10.1016/j.forsciint.2019. 109922 . |
24 | ZHANG J, ZHOU Y, VIEIRA D N, et al. An efficient method for building a database of diatom populations for drowning site inference using a deep learning algorithm[J]. Int J Legal Med,2021,135(3):817-827. doi:10.1007/s00414-020-02497-5 . |
25 | 黄平,张吉,邓恺飞,等. 一种基于硅藻种属分类的溺水地点鉴定系统及方法:1102916.7[P]. 2021-07-20. |
HUANG P, ZHANG J, DENG K F, et al. A drowning site identification system and method based on the classification of diatom species:1102916.7[P]. 2021-07-02. | |
26 | 司法鉴定科学研究院. 智能化硅藻鉴识系统[简称:DiatomNet]V1.0:2021SR0337617[P]. 2020-12-23. |
Accademy of Forensic Science. Intelligent diatom discrimination system[Abbreviation: DiatomNet]V1.0:2021SR0337617[P]. 2020-12-23. | |
27 | 福建省公安厅刑侦总队. 人体组织器官中硅藻硝酸破机法检验: [S]. 北京:中国标准出版社,2009. |
Criminal Investigation Corps of Fujian Provincial Public Security Department. Detection the diatoms in human tissues and organs by digesting organic matter with nitric acid: [S]. Beijing: China Standards Publishing Press,2009. | |
28 | DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.Miami: IEEE,2009:248-255. doi:10.1109/CVPR.2009.5206848 . |
29 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. 2017 IEEE Int Conf Comput Vis ICCV,2017:618-626. doi:10.1109/ICCV.2017.74 . |
30 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[J]. 2016 IEEE Conf Comput Vis Pattern Recognit CVPR,2016:2818-2826. doi:10.1109/CVPR.2016.308 . |
31 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE,2016:770-778. doi:10.1109/CVPR.2016.90 . |
32 | KRAUSE L M K, KOC J, ROSENHAHN B, et al. Fully convolutional neural network for detection and counting of diatoms on coatings after short-term field exposure[J]. Environ Sci Technol,2020,54(16):10022-10030. doi:10.1021/acs.est.0c01982 . |
33 | RUIZ-SANTAQUITERIA J, BUENO G, DENIZ O, et al. Semantic versus instance segmentation in microscopic algae detection[J]. Eng Appl Artif Intel,2020,87. doi:10.1016/j.engappai.2019.103271 . |
34 | BUENO G, DENIZ O, RUIZ-SANTAQUITERIA J, et al. Lights and pitfalls of convolutional neural networks for diatom identification[C]//Optics, Photonics and Digital Technologies for Imaging Applications V. Strasbourg:SPIE Photonics Europe,2018. doi:10.1117/12.2309488 . |
[1] | Yong ZENG, Dong-hua ZOU, Ying FAN, Qing XU, Lu-yang TAO, Yi-jiu CHEN, Zheng-dong LI. Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics [J]. Journal of Forensic Medicine, 2023, 39(5): 471-477. |
[2] | Yu-xin SUN, Xiao-juan GONG, Xiu-li HAO, Yu-xin TIAN, Yi-ming CHEN, Bao ZHANG, Chun-xia YAN. Screening of Genes Co-Associated with Sudden Infant Death Syndrome and Infectious Sudden Death in Infancy and Bioinformatics Analysis of Their Regulatory Networks [J]. Journal of Forensic Medicine, 2023, 39(5): 433-440. |
[3] | Yu YANG, Fan-zhang LEI, Yu-you DONG, Jian-long MA, Qi-qiang SHI, Xue-song YE. Retrospective Analysis of Death Cases of Oral Diphenidol Hydrochloride Poisoning [J]. Journal of Forensic Medicine, 2023, 39(4): 393-398. |
[4] | Jie BAI, Jing SUN, Xiao-guang CHENG, Fan LIU, Hua LIU, Xu WANG. Construction and Application of Rib Fracture Diagnosis Model Based on YOLOv3 Algorithm [J]. Journal of Forensic Medicine, 2023, 39(4): 343-349. |
[5] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[6] | Qin SU, Qian-ling CHEN, Wei-bin WU, Qing-qing XIANG, Cheng-liang YANG, Dong-fang QIAO, Zhi-gang LI. Metabonomics Analysis of Brain Stem Tissue in Rats with Primary Brain Stem Injury Caused Death [J]. Journal of Forensic Medicine, 2023, 39(4): 373-381. |
[7] | Xu-dong ZHANG, Yao-ru JIANG, Xin-rui LIANG, Tian TIAN, Qian-qian JIN, Xiao-hong ZHANG, Jie CAO, Qiu-xiang DU, Jun-hong SUN. Postmortem Interval Estimation Using Protein Chip Technology Combined with Multivariate Analysis Methods [J]. Journal of Forensic Medicine, 2023, 39(2): 115-120. |
[8] | Yong-gang MA, Yong-jie CAO, Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG, Ji ZHANG. Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning [J]. Journal of Forensic Medicine, 2023, 39(2): 129-136. |
[9] | Wu LONG, Peng-fei QU, Lin MA, Rui WANG, Yan-mei XI, Yu-hua LI, Sheng-jie NIE, Ting DUAN, Jin-liang DU, Xue TANG, Jing-feng ZHAO, Pu-ping LEI, Yue-bing WANG. Cytotoxicity of 4 Wild Mushrooms in a Case of Yunnan Sudden Unexplained Death [J]. Journal of Forensic Medicine, 2023, 39(2): 121-128. |
[10] | Jun-wei GAO, Yang LU, Yan-jun LI, Dong-hua ZOU, Guang-long HE, Yan-bin WANG. Survey on the Construction Status of Forensic Virtual Autopsy Laboratory and the Applicability of Laboratory Accreditation [J]. Journal of Forensic Medicine, 2023, 39(2): 186-192. |
[11] | Fang-Fang LIU, Hui WU, Wei WANG, Ying XIE. Changes of 1,5-AG in Vitreous Humor of Rabbit Cadavers with Hyperglycemic Metabolism [J]. Journal of Forensic Medicine, 2023, 39(1): 13-17. |
[12] | Zhi-ling TIAN, Ruo-lin WANG, Jian-hua ZHANG, Ping HUANG, Zhi-qiang QIN, Zheng-dong LI, He-wen DONG, Dong-hua ZOU, Mao-wen WANG, Zhuo LI, Lei WAN, Xiao-tian YU, Ning-guo LIU. Comparison of CT Values between Thrombus and Postmortem Clot Based on Cadaveric Pulmonary Angiography [J]. Journal of Forensic Medicine, 2023, 39(1): 7-12. |
[13] | Hong-xia HAO, Ya-hui WANG, Zhi-lu ZHOU, Tai-ang LIU, Jin CHEN, Yu-heng HE, Lei WAN, Wen-tao XIA. Research Progress of Age Estimation in the Living by Knee Joint MRI [J]. Journal of Forensic Medicine, 2023, 39(1): 66-71. |
[14] | Jia-yi WU, You-jia YU, Kai LI, Xin YIN, Han-ting FAN, Rong LI, Zhi-wei ZHANG, Wei TANG, Hui-jie HUANG, Feng CHEN. Report on Cardiac Gross Pathologic Measurements of Sudden Cardiac Death in Adults [J]. Journal of Forensic Medicine, 2023, 39(1): 1-6. |
[15] | Hui WU, Fang-fang LIU, Jun-da WU, Ying XIE. Research Progress on Estimation of Postmortem Interval Based on Ocular Tissues Structure [J]. Journal of Forensic Medicine, 2023, 39(1): 50-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||