Journal of Forensic Medicine ›› 2023, Vol. 39 ›› Issue (2): 129-136.DOI: 10.12116/j.issn.1004-5619.2022.220505
• Original Article • Previous Articles Next Articles
Yong-gang MA(), Yong-jie CAO(
), Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG(
), Ji ZHANG(
)
Received:
2022-05-10
Online:
2023-06-06
Published:
2023-04-25
Contact:
Dong-chuan ZHANG, Ji ZHANG
CLC Number:
Yong-gang MA, Yong-jie CAO, Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG, Ji ZHANG. Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning[J]. Journal of Forensic Medicine, 2023, 39(2): 129-136.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2022.220505
模型 | 总准确率/ % | 女性准确率/ % | 男性准确率/ % | 阳性预测值/ % | 阴性预测值/ % | AUC值 |
---|---|---|---|---|---|---|
模型1(右侧MIPR初始化学习模型) | 95.7 | 95.7 | 95.7 | 95.7 | 95.7 | 0.989 |
模型2(左侧MIPR初始化学习模型) | 92.1 | 88.6 | 95.7 | 95.4 | 89.3 | 0.967 |
模型3(双侧MIPR初始化学习模型) | 94.6 | 92.1 | 97.1 | 97.0 | 92.5 | 0.983 |
模型4(双侧MIPR迁移学习模型) | 95.7 | 95.7 | 95.7 | 95.7 | 95.7 | 0.975 |
Tab. 1 The performance of deep learning models for sex estimation in the testing dataset
模型 | 总准确率/ % | 女性准确率/ % | 男性准确率/ % | 阳性预测值/ % | 阴性预测值/ % | AUC值 |
---|---|---|---|---|---|---|
模型1(右侧MIPR初始化学习模型) | 95.7 | 95.7 | 95.7 | 95.7 | 95.7 | 0.989 |
模型2(左侧MIPR初始化学习模型) | 92.1 | 88.6 | 95.7 | 95.4 | 89.3 | 0.967 |
模型3(双侧MIPR初始化学习模型) | 94.6 | 92.1 | 97.1 | 97.0 | 92.5 | 0.983 |
模型4(双侧MIPR迁移学习模型) | 95.7 | 95.7 | 95.7 | 95.7 | 95.7 | 0.975 |
1 | ZHANG Z, ONG S H, ZHONG X, et al. Efficient 3D dental identification via signed feature histogram and learning keypoint detection[J]. Pattern Recogn,2016,60:189-204. doi:10.1016/j.patcog.2016. 05.007 . |
2 | GÓMEZ O, IBÁÑEZ O, VALSECCHI A, et al. 3D-2D silhouette-based image registration for comparative radiography-based forensic identification[J]. Pattern Recogn,2018,83:469-480. doi:10.1016/j.pat cog.2018.06.011 . |
3 | HOLOBINKO A. Forensic human identification in the United States and Canada: A review of the law, admissible techniques, and the legal implications of their application in forensic cases[J]. Forensic Sci Int,2012,222(1/2/3):394.e1-394.e13. doi:10 . |
1016/j.forsciint.2012.06.001. | |
4 | LEUTENEGGER W. Functional aspects of pelvic morphology in Simian Primates[J]. J Hum Evol,1974,3(3):207-222. doi:10.1016/0047-2484(74)90179-1 . |
5 | PHENICE T W. A newly developed visual method of sexing the os pubis[J]. Am J Phys Anthropol,1969,30(2):297-301. doi:10.1002/ajpa.1330300214 . |
6 | KELLEY M A. Phenice’s visual sexing technique for the os pubis: A critique[J]. Am J Phys Anthropol,1978,48(1):121-122. doi:10.1002/ajpa.1330480118 . |
7 | KLALES A R, OUSLEY S D, VOLLNER J M. A revised method of sexing the human innominate using Phenice’s nonmetric traits and statistical methods[J]. Am J Phys Anthropol,2012,149(1):104-114. doi:10 . |
1002/ajpa.22102. | |
8 | KLALES A R, COLE S J. Improving nonmetric sex classification for hispanic individuals[J]. J Forensic Sci,2017,62(4):975-980. doi:10.1111/1556-4029.13391 . |
9 | JOHNSTONE-BELFORD E, FLAVEL A, FRANKLIN D. Morphoscopic observations in clinical pelvic MDCT scans: Assessing the accuracy of the Phenice traits for sex estimation in a Western Australian population[J]. J Forensic Radiol Im,2018,12:5-10. doi:10 . |
1016/j.jofri.2018.02.003. | |
10 | GÓMEZ-VALDÉS J A, MENÉNDEZ GARMENDIA A, GARCÍA-BARZOLA L, et al. Recalibration of the Klales et al. (2012) method of sexing the human innominate for Mexican populations[J]. Am J Phys Anthropol,2017,162(3):600-604. doi:10.1002/ajpa.23157 . |
11 | SUTHERLAND L D, SUCHEY J M. Use of the ventral arc in pubic sex determination[J]. J Forensic Sci,1991,36(2):501-511. |
12 | LOVELL N C. Test of Phenice’s technique for determining sex from the os pubis[J]. Am J Phys Anthropol,1989,79(1):117-120. doi:10.1002/ajpa.1330 790112 . |
13 | MCFADDEN C, OXENHAM M F. Revisiting the Phenice technique sex classification results reported by MacLaughlin and Bruce (1990)[J]. Am J Phys Anthropol,2016,159(1):182-183. doi:10.1002/ajpa. 22839 . |
14 | LESCIOTTO K M, DOERSHUK L J . Accuracy and reliability of the Klales et al. (2012) morphoscopic pelvic sexing method[J]. J Forensic Sci,2018,63(1):214-220. doi:10.1111/1556-4029.13501 . |
15 | ZHAN M J, FAN F, QIU L R, et al. Estimation of stature and sex from sacrum and coccyx measurements by multidetector computed tomography in Chinese[J]. Leg Med (Tokyo),2018,34:21-26. doi:10.1016/j.legalmed.2018.07.003 . |
16 | 陶建华,陈聪,张怀宇,等. 鼻骨区骨折深度学习模型的建立和临床效能评估[J].放射学实践,2021,36(8):959-964. doi:10.13609/j.cnki.1000-0313.2021.08.003 . |
TAO J H, CHEN C, ZHANG H Y, et al. Establishment and evaluation of the clinical efficacy of deep learning model for detection of nasal bone fracture on CT images[J]. Fangshexue Shijian,2021,36(8):959-964. | |
17 | 钟碧霞,周冠群,许文琪,等. 基于深度学习的结肠癌病理图片分类研究[J].中国卫生统计,2021,38(3):363-367. doi:10.3969/j.issn.1002-3674.2021.03.010 . |
ZHONG B X, ZHOU G Q, XU W Q, et al. Classification for pathological images of colon cancer with deep learning[J]. Zhongguo Weisheng Tongji,2021,38(3):363-367. | |
18 | 刘晶,鲜军舫,李书玲,等. 深度学习模型检测胸部CT肺结节的临床效能评估[J].实用放射学杂志,2021,37(5):732-735,767. doi:10.3969/j.issn.1002-1671.2021.05.010 . |
LIU J, XIAN J F, LI S L, et al. Evaluation of the efficacy of deep learning model in detecting pulmonary nodules on chest CT images[J]. Shiyong Fangshexue Zazhi,2021,37(5):732-735,767. | |
19 | ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118. doi:10.1038/nature21056 . |
20 | SPAMPINATO C, PALAZZO S, GIORDANO D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Med Image Anal,2017,36:41-51. doi:10.1016/j.media.2016.10.010 . |
21 | ZHOU Y, ZHANG J, HUANG J, et al. Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm[J]. Forensic Sci Int,2019,302:109922. doi:10.1016/j.forsciint.2019.109922 . |
22 | ZHANG J, ZHOU Y, VIEIRA D N, et al. An efficient method for building a database of diatom populations for drowning site inference using a deep learning algorithm[J]. Int J Legal Med,2021,135(3):817-827. doi:10.1007/s00414-020-02497-5 . |
23 | CAO Y, MA Y, VIEIRA D N, et al. A potential method for sex estimation of human skeletons using deep learning and three-dimensional surface scanning[J]. Int J Legal Med,2021,135(6):2409-2421. doi:10.1007/s00414-021-02675-z . |
24 | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. doi:10.1038/ nature14539 . |
25 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA,2017:4278-4284. |
26 | 胡婷鸿,火忠,刘太昂,等. 基于深度学习实现维吾尔族青少年左手腕关节骨龄自动化评估[J].法医学杂志,2018,34(1):27-32. doi:10.3969/j.issn.1004-5619.2018.01.006 . |
HU T H, HUO Z, LIU T A, et al. Automated assessment for bone age of left wrist joint in Uyghur teenagers by deep learning[J]. Fayixue Zazhi,2018,34(1):27-32. | |
27 | 彭丽琴,万雷,汪茂文,等. 运用3种卷积神经网络模型对青少年骨盆骨龄评估的比较[J].法医学杂志,2020,36(5):622-630. doi:10.12116/j.issn.1004-5619.2020.05.004 . |
PENG L Q, WAN L, WANG M W, et al. Comparison of three CNN models applied in bone age assessment of pelvic radiographs of adolescents[J]. Fayixue Zazhi,2020,36(5):622-630. | |
28 | PENG L Q, GUO Y C, WAN L, et al. Forensic bone age estimation of adolescent pelvis X-rays based on two-stage convolutional neural network[J]. Int J Legal Med,2022,136(3):797-810. doi:10.1007/s004 14-021-02746-1 . |
29 | KLALES A R, VOLLNER J M, OUSLEY S D. A new metric procedure for the estimation of sex and ancestry from the human innominate[Z/OL]. [2022-04-12]. . |
30 | VOLLNER J M, KLALES A R, OUSLEY S D. Sexing of the human innominate using non-metric traits and statistical analysis[J/OL]. [2022-04-12]. . |
31 | COURTIOL P, MAUSSION C, MOARII M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome[J]. Nat Med,2019,25(10):1519-1525. doi:10.1038/s41591-019-05 83-3 . |
32 | GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA,2016,316(22):2402-2410. doi:10.1001/jama.2016.17216 . |
33 | DUNNMON J A, YI D, LANGLOTZ C P, et al. Assessment of convolutional neural networks for automated classification of chest radiographs[J]. Radio-logy,2019,290(2):537-544. doi:10.1148/radiol.20181 81422 . |
34 | KERMANY D S, GOLDBAUM M, CAI W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell,2018,172(5):1122-1131.e9. doi:10.1016/j.cell.2018.02.010 . |
35 | COUDRAY N, OCAMPO P S, SAKELLAROPOU-LOS T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nat Med,2018,24(10):1559-1567. doi:10.1038/s41591-018-0177-5 . |
36 | KIM H E, COSA-LINAN A, SANTHANAM N, et al. Transfer learning for medical image classification: A literature review[J]. BMC Med Imaging,2022,22(1):69. doi:10.1186/s12880-022-00793-7 . |
37 | OSIPENKO S, BOTASHEV K, NIKOLAEV E, et al. Transfer learning for small molecule retention predictions[J]. J Chromatogr A,2021,1644:462119. doi:10.1016/j.chroma.2021.462119 . |
38 | JAIN S, SINGHANIA U, TRIPATHY B, et al. Deep learning-based transfer learning for classification of skin cancer[J]. Sensors (Basel),2021,21(23):8142. doi:10.3390/s21238142 . |
[1] | Jia-xuan HAN, Shi-hui SHEN, Yi-wen WU, Xiao-dan SUN, Tian-nan CHEN, Jiang TAO. Adolescents and Children Age Estimation Using Machine Learning Based on Pulp and Tooth Volumes on CBCT Images [J]. Journal of Forensic Medicine, 2024, 40(2): 143-148. |
[2] | Lei SHI, Ye XUE, Li-rong QIU, Ting LU, Fei FAN, Yu-chi ZHOU, Zhen-hua DENG. Research Progress on Dental Age Estimation Based on MRI Technology [J]. Journal of Forensic Medicine, 2024, 40(2): 112-117. |
[3] | Xuan WEI, Yu-shan CHEN, Jie DING, Chang-xing SONG, Jun-jing WANG, Zhao PENG, Zhen-hua DENG, Xu YI, Fei FAN. Age Estimation by Machine Learning and CT-Multiplanar Reformation of Cranial Sutures in Northern Chinese Han Adults [J]. Journal of Forensic Medicine, 2024, 40(2): 128-134. |
[4] | Yu-xin GUO, Wen-qing BU, Yu TANG, Di WU, Hui YANG, Hao-tian MENG, Yu-cheng GUO. Dental Age Estimation in Northern Chinese Han Children and Adolescents Using Demirjian’s Method Combined with Machine Learning Algorithms [J]. Journal of Forensic Medicine, 2024, 40(2): 135-142. |
[5] | Dan-yang LI, Yu PAN, Hui-ming ZHOU, Lei WAN, Cheng-tao LI, Mao-wen WANG, Ya-hui WANG. Application of Medical Statistical and Machine Learning Methods in the Age Estimation of Living Individuals [J]. Journal of Forensic Medicine, 2024, 40(2): 118-127. |
[6] | Huai-han ZHANG, Yong-jie CAO, Ji ZHANG, Jian XIONG, Ji-wei MA, Xiao-tong YANG, Ping HUANG, Yong-gang MA. Adults Ischium Age Estimation Based on Deep Learning and 3D CT Reconstruction [J]. Journal of Forensic Medicine, 2024, 40(2): 154-163. |
[7] | De-min HUO, Kai-jun MA, Jing-lan XU, Xu SONG, Xiao-yan MAO, Xia LIU, Kai-fang ZHAO, Jian ZHANG, Meng DU. Determining Whether an Individual is 18 Years or Older Based on the Third Molar Root Pulp Visibility in East China [J]. Journal of Forensic Medicine, 2024, 40(2): 149-153. |
[8] | Hong-xia HAO, Ya-hui WANG, Zhi-lu ZHOU, Tai-ang LIU, Jin CHEN, Yu-heng HE, Lei WAN, Wen-tao XIA. Research Progress of Age Estimation in the Living by Knee Joint MRI [J]. Journal of Forensic Medicine, 2023, 39(1): 66-71. |
[9] | Xiao-tong YANG, Cheng-hui SUN, Yong-gang MA, Yong-jie CAO, Jian XIONG, Ji ZHANG, Ping HUANG. Sex Estimation of Han Adults in Western China Based on Three-Dimensional Cranial CT Reconstruction [J]. Journal of Forensic Medicine, 2023, 39(1): 27-33. |
[10] | Jing-jing MA, Min SHANG, Da-wei QIN, Wen-zhao REN, Jia-yin SHI, Xiao-yun ZHAO, Ze-wei YAO, Fan LI. Relationship between the Height of Alveolar Bone Resorption and Sex and Age in Adolescents [J]. Journal of Forensic Medicine, 2022, 38(5): 589-594. |
[11] | Dong-chuan ZHANG, Geng FEI, Ting-ting CHEN, Lu-yi XU, De-lun YU, Tian-ye ZHANG. Comparison of Three Methods for Skeleton Age Estimation [J]. Journal of Forensic Medicine, 2022, 38(3): 319-323. |
[12] | Fei-xiang WANG, Rui JI, Lu-ming ZHANG, Peng WANG, Tai-ang LIU, Lu-jie SONG, Mao-wen WANG, Zhi-lu ZHOU, Hong-xia HAO, Wen-tao XIA. Pelvic Injury Discriminative Model Based on Data Mining Algorithm [J]. Journal of Forensic Medicine, 2022, 38(3): 350-354. |
[13] | Qi-fan YANG, Xue-yang SUN, Yan-bin WANG, Zhi-ling TIAN, He-wen DONG, Lei WAN, Dong-hua ZOU, Xiao-tian YU, Guang-zheng ZHANG, Ning-guo LIU. Automatic Identification of Brain Injury Mechanism Based on Deep Learning [J]. Journal of Forensic Medicine, 2022, 38(2): 223-230. |
[14] | Yong-zheng ZHU, Ji ZHANG, Qi CHENG, Hui-xiao YU, Kai-fei DENG, Jian-hua ZHANG, Zhi-qiang QIN, Jian ZHAO, Jun-hong SUN, Ping HUANG. Comparison among Four Deep Learning Image Classification Algorithms in AI-based Diatom Test [J]. Journal of Forensic Medicine, 2022, 38(1): 31-39. |
[15] | Yong-zheng ZHU, Ji ZHANG, Qi CHENG, Kai-fei DENG, Kai-jun MA, Jian-hua ZHANG, Jian ZHAO, Jun-hong SUN, Ping HUANG, Zhi-qiang QIN. Research Progress of Automatic Diatom Test by Artificial Intelligence [J]. Journal of Forensic Medicine, 2022, 38(1): 14-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||