Journal of Forensic Medicine ›› 2024, Vol. 40 ›› Issue (2): 128-134.DOI: 10.12116/j.issn.1004-5619.2023.231209
Xuan WEI1(), Yu-shan CHEN1, Jie DING2, Chang-xing SONG2, Jun-jing WANG2, Zhao PENG3, Zhen-hua DENG1, Xu YI2(
), Fei FAN1(
)
Received:
2023-12-26
Online:
2024-06-07
Published:
2024-04-25
Contact:
Xu YI, Fei FAN
CLC Number:
Xuan WEI, Yu-shan CHEN, Jie DING, Chang-xing SONG, Jun-jing WANG, Zhao PENG, Zhen-hua DENG, Xu YI, Fei FAN. Age Estimation by Machine Learning and CT-Multiplanar Reformation of Cranial Sutures in Northern Chinese Han Adults[J]. Journal of Forensic Medicine, 2024, 40(2): 128-134.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2023.231209
实际年龄/岁 | 男性 | 女性 | 合计 |
---|---|---|---|
合计 | 57 | 75 | 132 |
29.00~<40.00 | 9 | 11 | 20 |
40.00~<50.00 | 12 | 16 | 28 |
50.00~<60.00 | 12 | 16 | 28 |
60.00~<70.00 | 13 | 21 | 34 |
70.00~80.00 | 11 | 11 | 22 |
Tab. 1 Age and sex distribution of 132 samples
实际年龄/岁 | 男性 | 女性 | 合计 |
---|---|---|---|
合计 | 57 | 75 | 132 |
29.00~<40.00 | 9 | 11 | 20 |
40.00~<50.00 | 12 | 16 | 28 |
50.00~<60.00 | 12 | 16 | 28 |
60.00~<70.00 | 13 | 21 | 34 |
70.00~80.00 | 11 | 11 | 22 |
分级 | 描述 | 示意图 | 图像(以矢状缝为例) |
---|---|---|---|
等级1 | 颅缝未闭合 | ![]() | ![]() |
等级2 | 颅内缝开始闭合 | ![]() | ![]() |
等级3 | 颅内缝完全闭合 | ![]() | ![]() |
等级4 | 颅缝小部分闭合(<50%) | ![]() | ![]() |
等级5 | 颅缝大部分闭合(>50%) | ![]() | ![]() |
等级6 | 颅缝完全闭合,可见残留闭合线 | ![]() | ![]() |
等级7 | 颅缝完全闭合,闭合线消失 | ![]() | ![]() |
Tab. 2 Schematic diagram of cranial suture closure grades
分级 | 描述 | 示意图 | 图像(以矢状缝为例) |
---|---|---|---|
等级1 | 颅缝未闭合 | ![]() | ![]() |
等级2 | 颅内缝开始闭合 | ![]() | ![]() |
等级3 | 颅内缝完全闭合 | ![]() | ![]() |
等级4 | 颅缝小部分闭合(<50%) | ![]() | ![]() |
等级5 | 颅缝大部分闭合(>50%) | ![]() | ![]() |
等级6 | 颅缝完全闭合,可见残留闭合线 | ![]() | ![]() |
等级7 | 颅缝完全闭合,闭合线消失 | ![]() | ![]() |
模型 | 参数 |
---|---|
梯度提升回归 | n_estimators=20,min_samples_split=100,max_depth=1,subsample=1 |
支持向量回归 | kernel=rbf,C=10,gamma=0.01 |
决策树回归 | max_depth=1,min_samples_leaf=1,min_samples_split=2 |
贝叶斯岭回归 | max_iter=1,tol=0.0001 |
Tab. 3 Parameters of 4 machine learning models
模型 | 参数 |
---|---|
梯度提升回归 | n_estimators=20,min_samples_split=100,max_depth=1,subsample=1 |
支持向量回归 | kernel=rbf,C=10,gamma=0.01 |
决策树回归 | max_depth=1,min_samples_leaf=1,min_samples_split=2 |
贝叶斯岭回归 | max_iter=1,tol=0.0001 |
颅缝 | 等级/(n=132, | 等级≥6 | ρ值1) | |
---|---|---|---|---|
最小年龄/岁 | 例数 | |||
矢状缝 | 4.40±1.49 | 45 | 17 | 0.501 |
左侧人字缝 | 3.50±1.372) | - | 0 | 0.360 |
右侧人字缝 | 3.47±1.462) | 59 | 1 | 0.398 |
左侧冠状缝 | 3.93±1.302)3)4) | 56 | 4 | 0.463 |
右侧冠状缝 | 3.79±1.332)3)4)5) | 62 | 1 | 0.463 |
Tab. 4 Distribution of closure grade of each cranial suture
颅缝 | 等级/(n=132, | 等级≥6 | ρ值1) | |
---|---|---|---|---|
最小年龄/岁 | 例数 | |||
矢状缝 | 4.40±1.49 | 45 | 17 | 0.501 |
左侧人字缝 | 3.50±1.372) | - | 0 | 0.360 |
右侧人字缝 | 3.47±1.462) | 59 | 1 | 0.398 |
左侧冠状缝 | 3.93±1.302)3)4) | 56 | 4 | 0.463 |
右侧冠状缝 | 3.79±1.332)3)4)5) | 62 | 1 | 0.463 |
编号 | 模型 | r | ME/岁 | MAE/岁 | RMSE/岁 | AE<10%1) |
---|---|---|---|---|---|---|
1 | 线性回归(y=4.571 x1-1.906 x2-0.112 x3+0.575 x4+2.343 x5+32.247) | 0.530 | 3.668 | 10.164 | 12.605 | 62.96%(17/27) |
2 | 梯度提升回归 | 0.592 | 3.346 | 9.843 | 12.259 | 62.96%(17/27) |
3 | 支持向量回归 | 0.622 | 3.075 | 9.542 | 11.915 | 66.67%(18/27) |
4 | 决策树回归 | 0.546 | 3.737 | 9.648 | 12.450 | 62.96%(17/27) |
5 | 贝叶斯岭回归 | 0.568 | 3.427 | 9.877 | 12.366 | 55.56%(15/27) |
6 | 线性回归(y=2.765 x1+1.996 x2+4.033 x4+13.235)2) | 0.580 | -3.845 | 10.211 | 12.157 | 59.26%(16/27) |
7 | 线性回归(y=11.02 x6+17.19)3) | 0.598 | 0.072 | 11.104 | 13.949 | 55.56%(15/27) |
Tab. 5 Accuracy of each cranial suture age estimation models in the test set
编号 | 模型 | r | ME/岁 | MAE/岁 | RMSE/岁 | AE<10%1) |
---|---|---|---|---|---|---|
1 | 线性回归(y=4.571 x1-1.906 x2-0.112 x3+0.575 x4+2.343 x5+32.247) | 0.530 | 3.668 | 10.164 | 12.605 | 62.96%(17/27) |
2 | 梯度提升回归 | 0.592 | 3.346 | 9.843 | 12.259 | 62.96%(17/27) |
3 | 支持向量回归 | 0.622 | 3.075 | 9.542 | 11.915 | 66.67%(18/27) |
4 | 决策树回归 | 0.546 | 3.737 | 9.648 | 12.450 | 62.96%(17/27) |
5 | 贝叶斯岭回归 | 0.568 | 3.427 | 9.877 | 12.366 | 55.56%(15/27) |
6 | 线性回归(y=2.765 x1+1.996 x2+4.033 x4+13.235)2) | 0.580 | -3.845 | 10.211 | 12.157 | 59.26%(16/27) |
7 | 线性回归(y=11.02 x6+17.19)3) | 0.598 | 0.072 | 11.104 | 13.949 | 55.56%(15/27) |
1 | TODD T W, LYON JR D W. Endocranial suture closure. Its progress and age relationship. Part Ⅰ. — Adult males of white stock[J]. Am J Phys Anthropol,1924,7(3):325-384. doi:10.1002/ajpa.1330070320 . |
2 | TODD T W, LYON JR D W. Cranial suture closure. Its progress and age relationship. Part Ⅱ. — Ectocranial closure in adult males of white stock[J]. Am J Phys Anthropol,1925,8(1):23-45. doi:10.1002/ajpa.1330080103 . |
3 | MEINDL R S, LOVEJOY C O. Ectocranial suture closure: A revised method for the determination of skeletal age at death based on the lateral-anterior sutures[J]. Am J Phys Anthropol,1985,68(1):57-66. doi:10.1002/ajpa.1330680106 . |
4 | 范飞,占梦军,戴鑫华,等. 影像学方法推断成人年龄研究进展[J].法医学杂志,2020,36(5):605-613. doi:10.12116/j.issn.1004-5619.2020.05.002 . |
FAN F, ZHAN M J, DAI X H, et al. Research progress of adult age determination with imaging methods[J]. Fayixue Zazhi,2020,36(5):605-613. | |
5 | OBERT M, SCHULTE-GEERS C, SCHILLING R L, et al. High-resolution flat-panel volumetric CT images show no correlation between human age and sagittal suture obliteration — Independent of sex[J]. Forensic Sci Int,2010,200(1/2/3):180.e1-180.e12. doi:10.1016/j.forsciint.2010.04.006 . |
6 | NIKOLOVA S, TONEVA D, GEORGIEV I, et al. Sagittal suture maturation: Morphological reorganization, relation to aging, and reliability as an age-at-death indicator[J]. Am J Phys Anthropol,2019,169(1):78-92. doi:10.1002/ajpa.23810 . |
7 | HARTH S, OBERT M, RAMSTHALER F, et al. Estimating age by assessing the ossification degree of cranial sutures with the aid of flat-panel-CT[J]. Leg Med (Tokyo),2009,11(S1):186-189. doi:10 . |
1016/j.legalmed.2009.01.091. | |
8 | BOYD K L, VILLA C, LYNNERUP N. The use of CT scans in estimating age at death by examining the extent of ectocranial suture closure[J]. J Forensic Sci,2015,60(2):363-369. doi:10.1111/1556-4029.12683 . |
9 | BARSZCZ M, WOŹNIAK K. Complete sagittal suture closure evaluation based on post mortem computed tomography[J]. Leg Med (Tokyo),2021,52:101907. doi:10.1016/j.legalmed.2021.101907 . |
10 | 莫世泰,张文光,雷绍伯,等. 中国人颅骨缝的变化与年龄关系[J].人类学学报,1989,8(2):131-138. |
MO S T, ZHANG W G, LEI S B, et al. The relation between the age and changes in Chinese skull suture[J]. Renleixue Xuebao,1989,8(2):131-138. | |
11 | FAN F, TU M, LI R, et al. Age estimation by multidetector computed tomography of cranial sutures in Chinese male adults[J]. Am J Phys Anthropol,2020,171(3):550-558. doi:10.1002/ajpa.23998 . |
12 | CHIBA F, MAKINO Y, MOTOMURA A, et al. Age estimation by multidetector CT images of the sagittal suture[J]. Int J Legal Med,2013,127(5):1005-1011. doi:10.1007/s00414-013-0883-y . |
13 | 裘诗文,涂梦,范飞,等. 应用颅缝薄层CT扫描推断汉族成人年龄[J].法医学杂志,2020,36(4):507-513. doi:10.12116/j.issn.1004-5619.2020.04.015 . |
QIU S W, TU M, FAN F, et al. Age estimation in Han adults by thin-layer CT scan of cranial sutures[J]. Fayixue Zazhi,2020,36(4):507-513. | |
14 | 印国樑. 颅内外骨缝推断年龄的探讨[J].中国法医学杂志,1987,2(4):214-216. doi:10.13618/j.issn.1001-5728.1987.04.008 . |
YIN G L. A study of the ectocranial and endocranial suture closure for the age estimation[J]. Zhongguo Fayixue Zazhi,1987,2(4):214-216. | |
15 | LI J, CHEN Z, ZHONG W, et al. A study of 285 cases of cranial vault suture closure in Chinese adults[J]. Surg Radiol Anat,2022,44(3):361-368. doi:10.1007/s00276-021-02854-y . |
16 | RUENGDIT S, PRASITWATTANASEREE S, ME-KJAIDEE K, et al. Age estimation approaches using cranial suture closure: A validation study on a Thai population[J]. J Forensic Leg Med,2018,53:79-86. doi:10.1016/j.jflm.2017.11.009 . |
17 | FAN F, DONG X, WU X, et al. An evaluation of statistical models for age estimation and the assessment of the 18-year threshold using conventional pelvic radiographs[J]. Forensic Sci Int,2020,314:110350. doi:10.1016/j.forsciint.2020.110350 . |
18 | XU C, QU H, WANG G, et al. A novel strategy for forensic age prediction by DNA methylation and support vector regression model[J]. Sci Rep,2015,5:17788. doi:10.1038/srep17788 . |
19 | VELEMÍNSKÁ J, PILNÝ A, CEPEK M, et al. Dental age estimation and different predictive ability of various tooth types in the Czech population: Data mining methods[J]. Anthropol Anz,2013,70(3):331-345. doi:10.1127/0003-5548/2013/0311 . |
20 | ŠTEPANOVSKÝ M, IBROVÁ A, BUK Z, et al. Novel age estimation model based on development of permanent teeth compared with classical approach and other modern data mining methods[J]. Forensic Sci Int,2017,279:72-82. doi:10.1016/j.forsciint.2017.08.005 . |
21 | MEINL A, HUBER C D, TANGL S, et al. Comparison of the validity of three dental methods for the estimation of age at death[J]. Forensic Sci Int,2008,178(2/3):96-105. doi:10.1016/j.forsciint.2008.02.008 . |
22 | LIVERSIDGE H M, SMITH B H, MABER M. Bias and accuracy of age estimation using developing teeth in 946 children[J]. Am J Phys Anthropol,2010,143(4):545-554. doi:10.1002/ajpa.21349 . |
23 | AYKROYD R G, LUCY D, POLLARD A M, et al. Technical note: Regression analysis in adult age estimation[J]. Am J Phys Anthropol,1997,104(2):259-265. doi:10.1002/(SICI)1096-8644(199710)104:2<259::AID-AJPA11>3.0.CO;2-Z . |
24 | TANGMOSE S, THEVISSEN P, LYNNERUP N, et al. Age estimation in the living: Transition analysis on developing third molars[J]. Forensic Sci Int,2015,257:512.e1-512.e7. doi:10.1016/j.forsciint.2015.07.049 . |
[1] | Lei SHI, Ye XUE, Li-rong QIU, Ting LU, Fei FAN, Yu-chi ZHOU, Zhen-hua DENG. Research Progress on Dental Age Estimation Based on MRI Technology [J]. Journal of Forensic Medicine, 2024, 40(2): 112-117. |
[2] | Dan-yang LI, Yu PAN, Hui-ming ZHOU, Lei WAN, Cheng-tao LI, Mao-wen WANG, Ya-hui WANG. Application of Medical Statistical and Machine Learning Methods in the Age Estimation of Living Individuals [J]. Journal of Forensic Medicine, 2024, 40(2): 118-127. |
[3] | Xin ZHAO, Zhi-ming CHEN, Wen-yun LIU, Bo WANG, Hong-yang LI, Li-yao YANG, Yan TENG, Li-jun WANG, Yan-bin GAO, Wei-long CHEN, Lei ZHANG. Application of Targeted Coronary Angiography in the Diagnosis of Sudden Cardiac Death [J]. Journal of Forensic Medicine, 2023, 39(6): 542-548. |
[4] | Yi-hang HUANG, Wei-bo LIANG, Hui JIAN, Sheng-qiu QU. Modeling Methods and Influencing Factors for Age Estimation Based on DNA Methylation [J]. Journal of Forensic Medicine, 2023, 39(6): 601-607. |
[5] | Xing-yu MA, Hao CHENG, Zhong-duo ZHANG, Ye-ming LI, Dong ZHAO. Research Progress of Metabolomics Techniques Combined with Machine Learning Algorithm in Wound Age Estimation [J]. Journal of Forensic Medicine, 2023, 39(6): 596-600. |
[6] | Zi-wei WANG, Cheng-tao LI, Xi-ling LIU. Cross-Platform Application of DNA Methylation Age Estimation Model in Eastern Chinese Han Population [J]. Journal of Forensic Medicine, 2023, 39(5): 441-446. |
[7] | Jie BAI, Jing SUN, Xiao-guang CHENG, Fan LIU, Hua LIU, Xu WANG. Construction and Application of Rib Fracture Diagnosis Model Based on YOLOv3 Algorithm [J]. Journal of Forensic Medicine, 2023, 39(4): 343-349. |
[8] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[9] | Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs [J]. Journal of Forensic Medicine, 2023, 39(4): 406-416. |
[10] | Yong-gang MA, Yong-jie CAO, Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG, Ji ZHANG. Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning [J]. Journal of Forensic Medicine, 2023, 39(2): 129-136. |
[11] | Hong-xia HAO, Ya-hui WANG, Zhi-lu ZHOU, Tai-ang LIU, Jin CHEN, Yu-heng HE, Lei WAN, Wen-tao XIA. Research Progress of Age Estimation in the Living by Knee Joint MRI [J]. Journal of Forensic Medicine, 2023, 39(1): 66-71. |
[12] | Zi-wei WANG, Qian-nan XU, Cheng-tao LI, Xi-ling LIU. Age Estimation Based on DNA Methylation and Its Application Prospects in Forensic Medicine [J]. Journal of Forensic Medicine, 2023, 39(1): 72-82. |
[13] | Xiao-tong YANG, Cheng-hui SUN, Yong-gang MA, Yong-jie CAO, Jian XIONG, Ji ZHANG, Ping HUANG. Sex Estimation of Han Adults in Western China Based on Three-Dimensional Cranial CT Reconstruction [J]. Journal of Forensic Medicine, 2023, 39(1): 27-33. |
[14] | Jing-jing MA, Min SHANG, Da-wei QIN, Wen-zhao REN, Jia-yin SHI, Xiao-yun ZHAO, Ze-wei YAO, Fan LI. Relationship between the Height of Alveolar Bone Resorption and Sex and Age in Adolescents [J]. Journal of Forensic Medicine, 2022, 38(5): 589-594. |
[15] | Yan-ru XI, Yuan-xin LIU, Na FENG, Zhen GU, Jun-hong SUN, Jie CAO, Qian-qian JIN, Qiu-xiang DU. Application of Linear Regression Model of Gpnmb Gene in Rat Injury Time Estimation [J]. Journal of Forensic Medicine, 2022, 38(4): 468-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||