Journal of Forensic Medicine ›› 2024, Vol. 40 ›› Issue (2): 143-148.DOI: 10.12116/j.issn.1004-5619.2023.231210
Jia-xuan HAN(), Shi-hui SHEN, Yi-wen WU, Xiao-dan SUN, Tian-nan CHEN, Jiang TAO(
)
Received:
2023-12-28
Online:
2024-06-07
Published:
2024-04-25
Contact:
Jiang TAO
CLC Number:
Jia-xuan HAN, Shi-hui SHEN, Yi-wen WU, Xiao-dan SUN, Tian-nan CHEN, Jiang TAO. Adolescents and Children Age Estimation Using Machine Learning Based on Pulp and Tooth Volumes on CBCT Images[J]. Journal of Forensic Medicine, 2024, 40(2): 143-148.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2023.231210
年龄段/岁 | 男性 | 女性 | 合计 |
---|---|---|---|
合计 | 249 | 249 | 498 |
10.00~10.99 | 15 | 20 | 35 |
11.00~11.99 | 25 | 21 | 46 |
12.00~12.99 | 28 | 21 | 49 |
13.00~13.99 | 26 | 20 | 46 |
14.00~14.99 | 23 | 21 | 44 |
15.00~15.99 | 20 | 25 | 45 |
16.00~16.99 | 21 | 23 | 44 |
17.00~17.99 | 21 | 28 | 49 |
18.00~18.99 | 27 | 26 | 53 |
19.00~19.99 | 19 | 25 | 44 |
20.00~20.99 | 24 | 19 | 43 |
Tab. 1 Age and sex distribution of participants
年龄段/岁 | 男性 | 女性 | 合计 |
---|---|---|---|
合计 | 249 | 249 | 498 |
10.00~10.99 | 15 | 20 | 35 |
11.00~11.99 | 25 | 21 | 46 |
12.00~12.99 | 28 | 21 | 49 |
13.00~13.99 | 26 | 20 | 46 |
14.00~14.99 | 23 | 21 | 44 |
15.00~15.99 | 20 | 25 | 45 |
16.00~16.99 | 21 | 23 | 44 |
17.00~17.99 | 21 | 28 | 49 |
18.00~18.99 | 27 | 26 | 53 |
19.00~19.99 | 19 | 25 | 44 |
20.00~20.99 | 24 | 19 | 43 |
方法 | ME/岁 | MAE/岁 | MSE/岁 | RMSE/岁 | R2 |
---|---|---|---|---|---|
KNN | 0.045 | 1.193 | 2.174 | 1.474 | 0.779 |
RR | 0.043 | 1.355 | 2.669 | 1.634 | 0.729 |
DT | 0.361 | 1.714 | 4.977 | 2.231 | 0.494 |
逐步回归 | 0.137 | 1.598 | 3.642 | 1.908 | 0.617 |
Tab. 2 Comparison of performance amongfour dental age estimation methods
方法 | ME/岁 | MAE/岁 | MSE/岁 | RMSE/岁 | R2 |
---|---|---|---|---|---|
KNN | 0.045 | 1.193 | 2.174 | 1.474 | 0.779 |
RR | 0.043 | 1.355 | 2.669 | 1.634 | 0.729 |
DT | 0.361 | 1.714 | 4.977 | 2.231 | 0.494 |
逐步回归 | 0.137 | 1.598 | 3.642 | 1.908 | 0.617 |
1 | PANCHBHAI A S. Dental radiographic indicators, a key to age estimation[J]. Dentomaxillofac Radiol,2011,40(4):199-212. doi:10.1259/dmfr/19478385 . |
2 | CAMERIERE R, DE ANGELIS D, FERRANTE L, et al. Age estimation in children by measurement of open apices in teeth: A European formula[J]. Int J Legal Med,2007,121(6):449-453. doi:10.1007/s00414-007-0179-1 . |
3 | MEINL A, TANGL S, PERNICKA E, et al. On the applicability of secondary dentin formation to radiological age estimation in young adults[J]. J Forensic Sci,2007,52(2):438-441. doi:10.1111/j.1556-4029. 2006.00377.x . |
4 | KVAAL S I, KOLLTVEIT K M, THOMSEN I O, et al. Age estimation of adults from dental radiographs[J]. Forensic Sci Int,1995,74(3):175-185. doi:10.1016/0379-0738(95)01760-g . |
5 | KARKHANIS S, MACK P, FRANKLIN D. Age estimation standards for a Western Australian population using the dental age estimation technique developed by Kvaalet al.[J]. Forensic Sci Int,2014,235:104.e1-104.e6. doi:10.1016/j.forsciint.2013.12.008 . |
6 | CAMERIERE R, FERRANTE L, CINGOLANI M. Variations in pulp/tooth area ratio as an indicator of age: A preliminary study[J]. J Forensic Sci,2004,49(2):317-319. |
7 | MARROQUIN T Y, KARKHANIS S, KVAAL S I, et al. Age estimation in adults by dental imaging assessment systematic review[J]. Forensic Sci Int,2017,275:203-211. doi:10.1016/j.forsciint.2017.03.007 . |
8 | SHAH N, BANSAL N, LOGANI A. Recent advances in imaging technologies in dentistry[J]. World J Radiol,2014,6(10):794-807. doi:10.4329/wjr.v6.i10.794 . |
9 | ZHANG Z Y, YAN C X, MIN Q M, et al. Age estimation using pulp/enamel volume ratio of impacted mandibular third molars measured on CBCT images in a northern Chinese population[J]. Int J Legal Med,2019,133(6):1925-1933. doi:10.1007/s00414-019-02112-2 . |
10 | AKAY G, GUNGOR K, GURCAN S. The applicability of Kvaal methods and pulp/tooth volume ratio for age estimation of the Turkish adult population on cone beam computed tomography images[J]. Aust J Forensic Sci,2019,51(3):251-265. doi:10.1080/00450618.2017.1356872 . |
11 | BARBOSA M G, FRANCO A, DE OLIVEIRA R D B, et al. Pulp volume quantification methods in cone-beam computed tomography for age estimation: A critical review and meta-analysis[J]. J Forensic Sci,2023,68(3):743-756. doi:10.1111/1556-4029.15248 . |
12 | ZHAN M J, CHEN X G, SHI L, et al. Age estimation in Western Chinese adults by pulp-tooth volume ratios using cone-beam computed tomography[J]. Aust J Forensic Sci,2021,53(6):681-692. doi:10.1080/00450618.2020.1729415 . |
13 | ASAMI R, ABOSHI H, IWAWAKI A, et al. Age estimation based on the volume change in the maxillary premolar crown using micro CT[J]. Leg Med (Tokyo),2019,37:18-24. doi:10.1016/j.legalmed.2018.12.001 . |
14 | SASAKI T, KONDO O. Human age estimation from lower-canine pulp volume ratio based on Bayes’ theorem with modern Japanese population as prior distribution[J]. Anthropol Sci,2014,122(1):23-35. doi:10 . |
1537/ase.131115. | |
15 | 王亮,占梦军,赵家龙,等. 应用锥形束CT测量牙体积推断四川汉族女性成人年龄[J].中国口腔种植学杂志,2019,34(1):5-9. doi:10.3969/j.issn.1007-3957.2019.01.002 . |
WANG L, ZHAN M J, ZHAO J L, et al. Age estimation in Sichuan Han female adults based on tooth volume analysis using cone-beam computed tomography[J]. Zhongguo Kouqiang Zhongzhixue Zazhi,2019,34(1):5-9. | |
16 | GALIBOURG A, CUSSAT-BLANC S, DUMONCEL J, et al. Comparison of different machine learning approaches to predict dental age using Demirjian’s staging approach[J]. Int J Legal Med,2021,135(2):665-675. doi:10.1007/s00414-020-02489-5 . |
17 | SHEN S, ZHOU Z, WANG J, et al. Using machine learning to determine age over 16 based on development of third molar and periodontal ligament of second molar[J]. BMC Oral Health,2023,23(1):680. doi:10.1186/s12903-023-03284-5 . |
18 | SHEN S, LIU Z, WANG J, et al. Machine learning assisted Cameriere method for dental age estimation[J]. BMC Oral Health,2021,21(1):641. doi:10.1186/s12903-021-01996-0 . |
19 | YANG Z, FAN L, KWON K, et al. Age estimation for children and young adults by volumetric analysis of upper anterior teeth using cone-beam computed tomography data[J]. Folia Morphol (Warsz),2020,79(4):851-859. doi:10.5603/FM.a2020.0004 . |
20 | STAR H, THEVISSEN P, JACOBS R, et al. Human dental age estimation by calculation of pulp-tooth volume ratios yielded on clinically acquired cone beam computed tomography images of monoradicular teeth[J]. J Forensic Sci,2011,56(S1):77-82. doi:10.1111/j.1556-4029.2010.01633.x . |
21 | KVAAL S, SOLHEIM T. A non-destructive dental method for age estimation[J]. J Forensic Odontostomatol,1994,12(1):6-11. |
22 | GULSAHI A, KULAH C K, BAKIRARAR B, et al. Age estimation based on pulp/tooth volume ratio measured on cone-beam CT images[J]. Dentomaxillofac Radiol,2018,47(1):20170239. doi:10.1259/dmfr.20170239 . |
23 | HAGHANIFAR S, GHOBADI F, VAHDANI N, et al. Age estimation by pulp/tooth area ratio in anterior teeth using cone-beam computed tomography: Comparison of four teeth[J]. J Appl Oral Sci,2019,27:e20180722. doi:10.1590/1678-7757-2018-0722 . |
24 | MOLINA A, BRAVO M, FONSECA G M, et al. Dental age estimation based on pulp chamber/crown volume ratio measured on CBCT images in a Spanish population[J]. Int J Legal Med,2021,135(1):359-364. doi:10.1007/s00414-020-02377-y . |
25 | 葛立宏. 儿童口腔医学[M].5版.北京:人民卫生出版社,2020:43. |
GE L H. Pediatric dentistry[M]. 5th ed. Beijing: Peo-ple’s Medical Publishing House,2020:43. | |
26 | BHATIA N, VANDANA. Survey of nearest neighbor techniques[J]. IJCSIS,2010,8(2):302-305. doi:10.48550/arXiv.1007.0085 . |
27 | HASTIE T. Ridge regularization: An essential concept in data science[J]. Technometrics,2020,62(4):426-433. doi:10.1080/00401706.2020.1791959 . |
28 | SCHREIBER-GREGORY D N. Ridge regression and multicollinearity: An in-depth review[J]. Model Assist Stat Appl,2018,13(4):359-365. doi:10.3233/MAS-180446 . |
29 | COSTA V G, PEDREIRA C E. Recent advances in decision trees: An updated survey[J]. Artif Intell Rev,2023,56(5):4765-4800. doi:10.1007/s10462-022- 10275-5 . |
[1] | Lei SHI, Ye XUE, Li-rong QIU, Ting LU, Fei FAN, Yu-chi ZHOU, Zhen-hua DENG. Research Progress on Dental Age Estimation Based on MRI Technology [J]. Journal of Forensic Medicine, 2024, 40(2): 112-117. |
[2] | Xuan WEI, Yu-shan CHEN, Jie DING, Chang-xing SONG, Jun-jing WANG, Zhao PENG, Zhen-hua DENG, Xu YI, Fei FAN. Age Estimation by Machine Learning and CT-Multiplanar Reformation of Cranial Sutures in Northern Chinese Han Adults [J]. Journal of Forensic Medicine, 2024, 40(2): 128-134. |
[3] | Yu-xin GUO, Wen-qing BU, Yu TANG, Di WU, Hui YANG, Hao-tian MENG, Yu-cheng GUO. Dental Age Estimation in Northern Chinese Han Children and Adolescents Using Demirjian’s Method Combined with Machine Learning Algorithms [J]. Journal of Forensic Medicine, 2024, 40(2): 135-142. |
[4] | Dan-yang LI, Yu PAN, Hui-ming ZHOU, Lei WAN, Cheng-tao LI, Mao-wen WANG, Ya-hui WANG. Application of Medical Statistical and Machine Learning Methods in the Age Estimation of Living Individuals [J]. Journal of Forensic Medicine, 2024, 40(2): 118-127. |
[5] | Yi-hang HUANG, Wei-bo LIANG, Hui JIAN, Sheng-qiu QU. Modeling Methods and Influencing Factors for Age Estimation Based on DNA Methylation [J]. Journal of Forensic Medicine, 2023, 39(6): 601-607. |
[6] | Xing-yu MA, Hao CHENG, Zhong-duo ZHANG, Ye-ming LI, Dong ZHAO. Research Progress of Metabolomics Techniques Combined with Machine Learning Algorithm in Wound Age Estimation [J]. Journal of Forensic Medicine, 2023, 39(6): 596-600. |
[7] | Zi-wei WANG, Cheng-tao LI, Xi-ling LIU. Cross-Platform Application of DNA Methylation Age Estimation Model in Eastern Chinese Han Population [J]. Journal of Forensic Medicine, 2023, 39(5): 441-446. |
[8] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[9] | Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs [J]. Journal of Forensic Medicine, 2023, 39(4): 406-416. |
[10] | Yong-gang MA, Yong-jie CAO, Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG, Ji ZHANG. Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning [J]. Journal of Forensic Medicine, 2023, 39(2): 129-136. |
[11] | Hong-xia HAO, Ya-hui WANG, Zhi-lu ZHOU, Tai-ang LIU, Jin CHEN, Yu-heng HE, Lei WAN, Wen-tao XIA. Research Progress of Age Estimation in the Living by Knee Joint MRI [J]. Journal of Forensic Medicine, 2023, 39(1): 66-71. |
[12] | Zi-wei WANG, Qian-nan XU, Cheng-tao LI, Xi-ling LIU. Age Estimation Based on DNA Methylation and Its Application Prospects in Forensic Medicine [J]. Journal of Forensic Medicine, 2023, 39(1): 72-82. |
[13] | Xiao-tong YANG, Cheng-hui SUN, Yong-gang MA, Yong-jie CAO, Jian XIONG, Ji ZHANG, Ping HUANG. Sex Estimation of Han Adults in Western China Based on Three-Dimensional Cranial CT Reconstruction [J]. Journal of Forensic Medicine, 2023, 39(1): 27-33. |
[14] | Jing-jing MA, Min SHANG, Da-wei QIN, Wen-zhao REN, Jia-yin SHI, Xiao-yun ZHAO, Ze-wei YAO, Fan LI. Relationship between the Height of Alveolar Bone Resorption and Sex and Age in Adolescents [J]. Journal of Forensic Medicine, 2022, 38(5): 589-594. |
[15] | Yan-ru XI, Yuan-xin LIU, Na FENG, Zhen GU, Jun-hong SUN, Jie CAO, Qian-qian JIN, Qiu-xiang DU. Application of Linear Regression Model of Gpnmb Gene in Rat Injury Time Estimation [J]. Journal of Forensic Medicine, 2022, 38(4): 468-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||