Journal of Forensic Medicine ›› 2024, Vol. 40 ›› Issue (2): 135-142.DOI: 10.12116/j.issn.1004-5619.2023.231208
Yu-xin GUO1(), Wen-qing BU1,2, Yu TANG1,2, Di WU1,2, Hui YANG1,2, Hao-tian MENG1, Yu-cheng GUO1,2(
)
Received:
2023-12-24
Online:
2024-06-07
Published:
2024-04-25
Contact:
Yu-cheng GUO
CLC Number:
Yu-xin GUO, Wen-qing BU, Yu TANG, Di WU, Hui YANG, Hao-tian MENG, Yu-cheng GUO. Dental Age Estimation in Northern Chinese Han Children and Adolescents Using Demirjian’s Method Combined with Machine Learning Algorithms[J]. Journal of Forensic Medicine, 2024, 40(2): 135-142.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2023.231208
模型 | 总样本 | 女性样本 | 男性样本 | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | MAE/岁 | 最佳参数 | R2 | MAE/岁 | 最佳参数 | R2 | MAE/岁 | 最佳参数 | |
SVR | 0.904 2 | 1.246 3 | C=10,kernel=rbf | 0.900 8 | 1.281 8 | C=1,kernel=rbf | 0.908 6 | 1.161 8 | C=10,kernel=rbf |
GBR | 0.904 0 | 1.263 8 | max_depth=3,n_estimators=100 | 0.901 1 | 1.292 2 | max_depth=3,n_estimators=100 | 0.909 4 | 1.153 8 | max_depth=3,n_estimators=50 |
RFR | 0.900 7 | 1.297 2 | max_depth=7,n_estimators=200 | 0.890 8 | 1.331 6 | max_depth=7,n_estimators=200 | 0.905 5 | 1.192 0 | max_depth=7,n_estimators=200 |
DTR | 0.899 5 | 1.305 1 | max_depth=5 | 0.890 5 | 1.354 3 | max_depth=5 | 0.900 4 | 1.225 0 | max_depth=5 |
LR | 0.865 9 | 1.597 7 | - | 0.853 6 | 1.663 7 | - | 0.869 9 | 1.522 5 | - |
Tab. 1 The fitting effect and optimal parameter setting of different machine learning modelsin total, female and male samples
模型 | 总样本 | 女性样本 | 男性样本 | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | MAE/岁 | 最佳参数 | R2 | MAE/岁 | 最佳参数 | R2 | MAE/岁 | 最佳参数 | |
SVR | 0.904 2 | 1.246 3 | C=10,kernel=rbf | 0.900 8 | 1.281 8 | C=1,kernel=rbf | 0.908 6 | 1.161 8 | C=10,kernel=rbf |
GBR | 0.904 0 | 1.263 8 | max_depth=3,n_estimators=100 | 0.901 1 | 1.292 2 | max_depth=3,n_estimators=100 | 0.909 4 | 1.153 8 | max_depth=3,n_estimators=50 |
RFR | 0.900 7 | 1.297 2 | max_depth=7,n_estimators=200 | 0.890 8 | 1.331 6 | max_depth=7,n_estimators=200 | 0.905 5 | 1.192 0 | max_depth=7,n_estimators=200 |
DTR | 0.899 5 | 1.305 1 | max_depth=5 | 0.890 5 | 1.354 3 | max_depth=5 | 0.900 4 | 1.225 0 | max_depth=5 |
LR | 0.865 9 | 1.597 7 | - | 0.853 6 | 1.663 7 | - | 0.869 9 | 1.522 5 | - |
年龄区间/岁 | 例数 | 真实值/( | 预测值/( | 残差/( | MAE |
---|---|---|---|---|---|
5.00~5.99 | 501 | 5.49±0.03 | 5.82±0.07 | -0.33±0.06 | 0.44 |
6.00~6.99 | 505 | 6.51±0.03 | 6.70±0.07 | -0.19±0.07 | 0.53 |
7.00~7.99 | 508 | 7.54±0.03 | 7.73±0.08 | -0.19±0.07 | 0.56 |
8.00~8.99 | 509 | 8.51±0.03 | 9.06±0.27 | -0.55±0.27 | 1.17 |
9.00~9.99 | 516 | 9.47±0.03 | 9.59±0.07 | -0.12±0.07 | 0.52 |
10.00~10.99 | 503 | 10.52±0.03 | 10.63±0.10 | -0.12±0.09 | 0.72 |
11.00~11.99 | 518 | 11.51±0.03 | 12.11±0.21 | -0.60±0.21 | 1.42 |
12.00~12.99 | 502 | 12.47±0.03 | 12.92±0.13 | -0.45±0.13 | 1.10 |
13.00~13.99 | 512 | 13.49±0.03 | 13.78±0.13 | -0.29±0.13 | 1.01 |
14.00~14.99 | 512 | 14.49±0.03 | 14.80±0.15 | -0.31±0.14 | 1.16 |
15.00~15.99 | 510 | 15.53±0.03 | 15.58±0.15 | -0.04±0.15 | 1.19 |
16.00~16.99 | 521 | 16.49±0.03 | 16.70±0.19 | -0.22±0.19 | 1.69 |
17.00~17.99 | 538 | 17.57±0.03 | 18.39±0.21 | -0.82±0.21 | 1.90 |
18.00~18.99 | 505 | 18.58±0.03 | 18.85±0.26 | -0.27±0.26 | 2.00 |
19.00~19.99 | 509 | 19.54±0.03 | 20.14±0.23 | -0.60±0.23 | 2.02 |
20.00~20.99 | 501 | 20.52±0.03 | 20.78±0.19 | -0.26±0.19 | 1.50 |
21.00~21.99 | 546 | 21.45±0.03 | 21.16±0.15 | 0.30±0.15 | 1.27 |
22.00~22.99 | 501 | 22.48±0.03 | 21.76±0.13 | 0.73±0.13 | 0.77 |
23.00~23.99 | 533 | 23.49±0.03 | 21.77±0.12 | 1.72±0.12 | 1.72 |
24.00~24.99 | 506 | 24.46±0.03 | 22.06±0.07 | 2.40±0.08 | 2.40 |
Tab. 2 The prediction performance of the optimal age estimation model (SVR) for total samples
年龄区间/岁 | 例数 | 真实值/( | 预测值/( | 残差/( | MAE |
---|---|---|---|---|---|
5.00~5.99 | 501 | 5.49±0.03 | 5.82±0.07 | -0.33±0.06 | 0.44 |
6.00~6.99 | 505 | 6.51±0.03 | 6.70±0.07 | -0.19±0.07 | 0.53 |
7.00~7.99 | 508 | 7.54±0.03 | 7.73±0.08 | -0.19±0.07 | 0.56 |
8.00~8.99 | 509 | 8.51±0.03 | 9.06±0.27 | -0.55±0.27 | 1.17 |
9.00~9.99 | 516 | 9.47±0.03 | 9.59±0.07 | -0.12±0.07 | 0.52 |
10.00~10.99 | 503 | 10.52±0.03 | 10.63±0.10 | -0.12±0.09 | 0.72 |
11.00~11.99 | 518 | 11.51±0.03 | 12.11±0.21 | -0.60±0.21 | 1.42 |
12.00~12.99 | 502 | 12.47±0.03 | 12.92±0.13 | -0.45±0.13 | 1.10 |
13.00~13.99 | 512 | 13.49±0.03 | 13.78±0.13 | -0.29±0.13 | 1.01 |
14.00~14.99 | 512 | 14.49±0.03 | 14.80±0.15 | -0.31±0.14 | 1.16 |
15.00~15.99 | 510 | 15.53±0.03 | 15.58±0.15 | -0.04±0.15 | 1.19 |
16.00~16.99 | 521 | 16.49±0.03 | 16.70±0.19 | -0.22±0.19 | 1.69 |
17.00~17.99 | 538 | 17.57±0.03 | 18.39±0.21 | -0.82±0.21 | 1.90 |
18.00~18.99 | 505 | 18.58±0.03 | 18.85±0.26 | -0.27±0.26 | 2.00 |
19.00~19.99 | 509 | 19.54±0.03 | 20.14±0.23 | -0.60±0.23 | 2.02 |
20.00~20.99 | 501 | 20.52±0.03 | 20.78±0.19 | -0.26±0.19 | 1.50 |
21.00~21.99 | 546 | 21.45±0.03 | 21.16±0.15 | 0.30±0.15 | 1.27 |
22.00~22.99 | 501 | 22.48±0.03 | 21.76±0.13 | 0.73±0.13 | 0.77 |
23.00~23.99 | 533 | 23.49±0.03 | 21.77±0.12 | 1.72±0.12 | 1.72 |
24.00~24.99 | 506 | 24.46±0.03 | 22.06±0.07 | 2.40±0.08 | 2.40 |
年龄区间/岁 | 例数 | 真实值/( | 预测值/( | 残差/( | MAE |
---|---|---|---|---|---|
5.00~5.99 | 225 | 5.52±0.04 | 5.73±0.07 | -0.21±0.07 | 0.38 |
6.00~6.99 | 222 | 6.43±0.05 | 6.59±0.10 | -0.16±0.09 | 0.44 |
7.00~7.99 | 205 | 7.47±0.05 | 7.61±0.12 | -0.14±0.12 | 0.68 |
8.00~8.99 | 162 | 8.55±0.05 | 8.94±0.48 | -0.40±0.47 | 0.78 |
9.00~9.99 | 232 | 9.47±0.04 | 9.50±0.09 | -0.03±0.08 | 0.47 |
10.00~10.99 | 237 | 10.50±0.04 | 11.01±0.14 | -0.50±0.13 | 0.89 |
11.00~11.99 | 295 | 11.55±0.04 | 12.35±0.23 | -0.80±0.22 | 1.29 |
12.00~12.99 | 273 | 12.43±0.03 | 13.30±0.16 | -0.87±0.17 | 1.31 |
13.00~13.99 | 299 | 13.54±0.04 | 14.00±0.22 | -0.46±0.21 | 1.20 |
14.00~14.99 | 304 | 14.44±0.04 | 14.69±0.19 | -0.25±0.20 | 1.12 |
15.00~15.99 | 297 | 15.46±0.04 | 16.35±0.21 | -0.89±0.21 | 1.49 |
16.00~16.99 | 286 | 16.48±0.04 | 16.69±0.25 | -0.21±0.25 | 1.56 |
17.00~17.99 | 303 | 17.53±0.04 | 18.16±0.29 | -0.64±0.28 | 1.87 |
18.00~18.99 | 310 | 18.53±0.04 | 18.18±0.36 | 0.34±0.35 | 2.07 |
19.00~19.99 | 329 | 19.49±0.04 | 20.44±0.27 | -0.95±0.27 | 1.85 |
20.00~20.99 | 331 | 20.50±0.04 | 20.64±0.27 | -0.14±0.27 | 1.51 |
21.00~21.99 | 353 | 21.50±0.04 | 21.33±0.16 | 0.16±0.16 | 1.19 |
22.00~22.99 | 335 | 22.47±0.04 | 22.05±0.11 | 0.43±0.11 | 0.56 |
23.00~23.99 | 346 | 23.45±0.04 | 21.98±0.11 | 1.47±0.12 | 1.47 |
24.00~24.99 | 334 | 24.51±0.03 | 22.10±0.10 | 2.41±0.10 | 2.41 |
Tab. 3 The prediction performance of the optimal age estimation model (SVR) for female samples
年龄区间/岁 | 例数 | 真实值/( | 预测值/( | 残差/( | MAE |
---|---|---|---|---|---|
5.00~5.99 | 225 | 5.52±0.04 | 5.73±0.07 | -0.21±0.07 | 0.38 |
6.00~6.99 | 222 | 6.43±0.05 | 6.59±0.10 | -0.16±0.09 | 0.44 |
7.00~7.99 | 205 | 7.47±0.05 | 7.61±0.12 | -0.14±0.12 | 0.68 |
8.00~8.99 | 162 | 8.55±0.05 | 8.94±0.48 | -0.40±0.47 | 0.78 |
9.00~9.99 | 232 | 9.47±0.04 | 9.50±0.09 | -0.03±0.08 | 0.47 |
10.00~10.99 | 237 | 10.50±0.04 | 11.01±0.14 | -0.50±0.13 | 0.89 |
11.00~11.99 | 295 | 11.55±0.04 | 12.35±0.23 | -0.80±0.22 | 1.29 |
12.00~12.99 | 273 | 12.43±0.03 | 13.30±0.16 | -0.87±0.17 | 1.31 |
13.00~13.99 | 299 | 13.54±0.04 | 14.00±0.22 | -0.46±0.21 | 1.20 |
14.00~14.99 | 304 | 14.44±0.04 | 14.69±0.19 | -0.25±0.20 | 1.12 |
15.00~15.99 | 297 | 15.46±0.04 | 16.35±0.21 | -0.89±0.21 | 1.49 |
16.00~16.99 | 286 | 16.48±0.04 | 16.69±0.25 | -0.21±0.25 | 1.56 |
17.00~17.99 | 303 | 17.53±0.04 | 18.16±0.29 | -0.64±0.28 | 1.87 |
18.00~18.99 | 310 | 18.53±0.04 | 18.18±0.36 | 0.34±0.35 | 2.07 |
19.00~19.99 | 329 | 19.49±0.04 | 20.44±0.27 | -0.95±0.27 | 1.85 |
20.00~20.99 | 331 | 20.50±0.04 | 20.64±0.27 | -0.14±0.27 | 1.51 |
21.00~21.99 | 353 | 21.50±0.04 | 21.33±0.16 | 0.16±0.16 | 1.19 |
22.00~22.99 | 335 | 22.47±0.04 | 22.05±0.11 | 0.43±0.11 | 0.56 |
23.00~23.99 | 346 | 23.45±0.04 | 21.98±0.11 | 1.47±0.12 | 1.47 |
24.00~24.99 | 334 | 24.51±0.03 | 22.10±0.10 | 2.41±0.10 | 2.41 |
年龄区间/岁 | 例数 | 真实值/( | 预测值/( | 残差/( | MAE |
---|---|---|---|---|---|
5.00~5.99 | 276 | 5.54±0.04 | 5.85±0.11 | -0.32±0.11 | 0.45 |
6.00~6.99 | 283 | 6.50±0.04 | 6.79±0.09 | -0.29±0.09 | 0.53 |
7.00~7.99 | 303 | 7.47±0.04 | 7.76±0.08 | -0.28±0.07 | 0.53 |
8.00~8.99 | 347 | 8.48±0.03 | 9.24±0.34 | -0.76±0.34 | 1.19 |
9.00~9.99 | 284 | 9.47±0.04 | 9.79±0.13 | -0.32±0.13 | 0.76 |
10.00~10.99 | 266 | 10.46±0.04 | 10.91±0.12 | -0.45±0.11 | 0.76 |
11.00~11.99 | 223 | 11.50±0.05 | 11.71±0.26 | -0.21±0.24 | 1.14 |
12.00~12.99 | 229 | 12.40±0.04 | 12.54±0.16 | -0.14±0.16 | 0.78 |
13.00~13.99 | 213 | 13.45±0.04 | 14.02±0.19 | -0.57±0.18 | 1.09 |
14.00~14.99 | 208 | 14.50±0.04 | 15.18±0.21 | -0.69±0.21 | 1.16 |
15.00~15.99 | 213 | 15.53±0.05 | 15.65±0.17 | -0.12±0.17 | 0.90 |
16.00~16.99 | 235 | 16.53±0.04 | 17.09±0.28 | -0.56±0.27 | 1.39 |
17.00~17.99 | 235 | 17.46±0.04 | 17.84±0.32 | -0.38±0.32 | 1.76 |
18.00~18.99 | 195 | 18.49±0.05 | 18.25±0.37 | 0.24±0.36 | 1.80 |
19.00~19.99 | 180 | 19.50±0.05 | 20.09±0.33 | -0.59±0.34 | 1.85 |
20.00~20.99 | 170 | 20.53±0.06 | 21.16±0.22 | -0.64±0.24 | 1.42 |
21.00~21.99 | 193 | 21.52±0.05 | 21.30±0.17 | 0.23±0.17 | 0.65 |
22.00~22.99 | 166 | 22.40±0.05 | 21.23±0.24 | 1.17±0.25 | 1.17 |
23.00~23.99 | 187 | 23.54±0.05 | 21.19±0.18 | 2.35±0.18 | 2.35 |
24.00~24.99 | 172 | 24.48±0.05 | 21.52±0.16 | 2.96±0.18 | 2.96 |
Tab. 4 The prediction performance of the optimal age estimation model (SVR) for male samples
年龄区间/岁 | 例数 | 真实值/( | 预测值/( | 残差/( | MAE |
---|---|---|---|---|---|
5.00~5.99 | 276 | 5.54±0.04 | 5.85±0.11 | -0.32±0.11 | 0.45 |
6.00~6.99 | 283 | 6.50±0.04 | 6.79±0.09 | -0.29±0.09 | 0.53 |
7.00~7.99 | 303 | 7.47±0.04 | 7.76±0.08 | -0.28±0.07 | 0.53 |
8.00~8.99 | 347 | 8.48±0.03 | 9.24±0.34 | -0.76±0.34 | 1.19 |
9.00~9.99 | 284 | 9.47±0.04 | 9.79±0.13 | -0.32±0.13 | 0.76 |
10.00~10.99 | 266 | 10.46±0.04 | 10.91±0.12 | -0.45±0.11 | 0.76 |
11.00~11.99 | 223 | 11.50±0.05 | 11.71±0.26 | -0.21±0.24 | 1.14 |
12.00~12.99 | 229 | 12.40±0.04 | 12.54±0.16 | -0.14±0.16 | 0.78 |
13.00~13.99 | 213 | 13.45±0.04 | 14.02±0.19 | -0.57±0.18 | 1.09 |
14.00~14.99 | 208 | 14.50±0.04 | 15.18±0.21 | -0.69±0.21 | 1.16 |
15.00~15.99 | 213 | 15.53±0.05 | 15.65±0.17 | -0.12±0.17 | 0.90 |
16.00~16.99 | 235 | 16.53±0.04 | 17.09±0.28 | -0.56±0.27 | 1.39 |
17.00~17.99 | 235 | 17.46±0.04 | 17.84±0.32 | -0.38±0.32 | 1.76 |
18.00~18.99 | 195 | 18.49±0.05 | 18.25±0.37 | 0.24±0.36 | 1.80 |
19.00~19.99 | 180 | 19.50±0.05 | 20.09±0.33 | -0.59±0.34 | 1.85 |
20.00~20.99 | 170 | 20.53±0.06 | 21.16±0.22 | -0.64±0.24 | 1.42 |
21.00~21.99 | 193 | 21.52±0.05 | 21.30±0.17 | 0.23±0.17 | 0.65 |
22.00~22.99 | 166 | 22.40±0.05 | 21.23±0.24 | 1.17±0.25 | 1.17 |
23.00~23.99 | 187 | 23.54±0.05 | 21.19±0.18 | 2.35±0.18 | 2.35 |
24.00~24.99 | 172 | 24.48±0.05 | 21.52±0.16 | 2.96±0.18 | 2.96 |
1 | SCHMELING A, GRUNDMANN C, FUHRMANN A, et al. Criteria for age estimation in living individuals[J]. Int J Legal Med,2008,122(6):457-460. doi:10.1007/s00414-008-0254-2 . |
2 | BAGHERIAN A, SADEGHI M. Assessment of dental maturity of children aged 3.5 to 13.5 years using the Demirjian method in an Iranian population[J]. J Oral Sci,2011,53(1):37-42. doi:10.2334/josnusd.53.37 . |
3 | KUMARESAN R, CUGATI N, CHANDRASEKA-RAN B, et al. Reliability and validity of five radiographic dental-age estimation methods in a population of Malaysian children[J]. J Investig Clin Dent,2016,7(1):102-109. doi:10.1111/jicd.12116 . |
4 | KUREMOTO K, OKAWA R, MATAYOSHI S, et al. Estimation of dental age based on the developmental stages of permanent teeth in Japanese children and adolescents[J]. Sci Rep,2022,12(1):3345. doi:10.1038/s41598-022-07304-2 . |
5 | 沈诗慧,陶疆. 基于牙齿不同发育阶段的年龄推断的研究进展[J].上海交通大学学报(医学版),2020,40(11):1540-1543. doi:10.3969/j.issn.1674-8115.2020.11.019 . |
SHEN S H, TAO J. Research progress of age estimation based on different developmental stages of teeth[J]. Shanghai Jiaotong Daxue Xuebao (Medical science),2020,40(11):1540-1543. | |
6 | DEMIRJIAN A, GOLDSTEIN H, TANNER J M. A new system of dental age assessment[J]. Hum Biol,1973,45(2):211-227. |
7 | VILA-BLANCO N, VARAS-QUINTANA P, TOMÁS I, et al. A systematic overview of dental methods for age assessment in living individuals: From traditional to artificial intelligence-based approaches[J]. Int J Legal Med,2023,137(4):1117-1146. doi:10.1007/s00414-023-02960-z . |
8 | 毛晓燕,霍德民,周子皓,等. 青少年第三磨牙发育的分期模式与年龄相关性研究[J].中国法医学杂志,2021,36(5):493-497. doi:10.13618/j.issn.1001-5728.2021.05.012 . |
MAO X Y, HUO D M, ZHOU Z H, et al. The model of classification of third molars development and its correlation with chronological age[J]. Zhongguo Fayixue Zazhi,2021,36(5):493-497. | |
9 | SUBEDI N, PARAJULI U, PAUDEL I S, et al. Demirjian’s eight teeth method for dental age estimation in Nepalese population[J]. J Nepal Health Res Counc,2021,18(4):686-691. doi:10.33314/jnhrc.v18i4.3119 . |
10 | 中华人民共和国公安部. 法庭科学 汉族青少年骨龄鉴定技术规程: [S].北京:中国标准出版社,2019. |
Ministry of Public Security of the People’s Republic of China. Forensic sciences — Technical specifications for skeletal age evaluation of Han population teenagers: [S]. Beijing: Standards Press of China,2019. | |
11 | AL-EMRAN S. Dental age assessment of 8.5 to 17 year-old Saudi children using Demirjian’s method[J]. J Contemp Dent Pract,2008,9(3):64-71. |
12 | CAVRIĆ J, VODANOVIĆ M, MARUŠIĆ A, et al. Time of mineralization of permanent teeth in children and adolescents in Gaborone, Botswana[J]. Ann Anat,2016,203:24-32. doi:10.1016/j.aanat.2015.08.001 . |
13 | MABER M, LIVERSIDGE H M, HECTOR M P. Accuracy of age estimation of radiographic methods using developing teeth[J]. Forensic Sci Int,2006,159(S1):68-73. doi:10.1016/j.forsciint.2006.02.019 . |
14 | MELO M, ATA-ALI J. Accuracy of the estimation of dental age in comparison with chronological age in a Spanish sample of 2 641 living subjects using the Demirjian and Nolla methods[J]. Forensic Sci Int,2017,270:276.e1-276.e7. doi:10.1016/j.forsciint.2016.10.001 . |
15 | OZVEREN N, SERINDERE G. Comparison of the applicability of Demirjian and Willems methods for dental age estimation in children from the Thrace region, Turkey[J]. Forensic Sci Int,2018,285:38-43. doi:10.1016/j.forsciint.2018.01.017 . |
16 | NEMSI H, DAYA M BEN, SALEM N H, et al. Applicability of Willems methods and Demirjian’s four teeth method for dental age estimation: Cross sectional study on Tunisian sub-adults[J]. Forensic Sci Int,2018,291:281.e1-281.e9. doi:10.1016/j.forsciint.2018.08.007 . |
17 | 兰玲梅,杨泽登,孙淑乐,等. Demirjian和Cameriere法在8~16岁湖南汉族青少年牙龄推断中的应用[J].法医学杂志,2019,35(4):406-410. doi:10.12116/j.issn.1004-5619.2019.04.005 . |
LAN L M, YANG Z D, SUN S L, et al. Application of Demirjian’s and Cameriere’s method in dental age estimation of 8-16 year old adolescents from Hunan Han nationality[J]. Fayixue Zazhi,2019,35(4):406-410. | |
18 | 韩梦琪,储光,陈腾,等. 基于Demirjian法推断年龄的研究进展[J].法医学杂志,2019,35(6):737-743. doi:10.12116/j.issn.1004-5619.2019.06.017 . |
HAN M Q, CHU G, CHEN T, et al. Research progress of age estimation based on the Demirjian’s method[J]. Fayixue Zazhi,2019,35(6):737-743. | |
19 | ZHAI Y, PARK H, HAN J, et al. Dental age assessment in a northern Chinese population[J]. J Forensic Leg Med,2016,38:43-49. doi:10.1016/j.jflm.2015.11.011 . |
20 | CHAILLET N, DEMIRJIAN A. Dental maturity in South France: A comparison between Demirjian’s method and polynomial functions[J]. J Forensic Sci,2004,49(5):1059-1066. |
[1] | Lei SHI, Ye XUE, Li-rong QIU, Ting LU, Fei FAN, Yu-chi ZHOU, Zhen-hua DENG. Research Progress on Dental Age Estimation Based on MRI Technology [J]. Journal of Forensic Medicine, 2024, 40(2): 112-117. |
[2] | Xuan WEI, Yu-shan CHEN, Jie DING, Chang-xing SONG, Jun-jing WANG, Zhao PENG, Zhen-hua DENG, Xu YI, Fei FAN. Age Estimation by Machine Learning and CT-Multiplanar Reformation of Cranial Sutures in Northern Chinese Han Adults [J]. Journal of Forensic Medicine, 2024, 40(2): 128-134. |
[3] | Dan-yang LI, Yu PAN, Hui-ming ZHOU, Lei WAN, Cheng-tao LI, Mao-wen WANG, Ya-hui WANG. Application of Medical Statistical and Machine Learning Methods in the Age Estimation of Living Individuals [J]. Journal of Forensic Medicine, 2024, 40(2): 118-127. |
[4] | Yi-hang HUANG, Wei-bo LIANG, Hui JIAN, Sheng-qiu QU. Modeling Methods and Influencing Factors for Age Estimation Based on DNA Methylation [J]. Journal of Forensic Medicine, 2023, 39(6): 601-607. |
[5] | Xing-yu MA, Hao CHENG, Zhong-duo ZHANG, Ye-ming LI, Dong ZHAO. Research Progress of Metabolomics Techniques Combined with Machine Learning Algorithm in Wound Age Estimation [J]. Journal of Forensic Medicine, 2023, 39(6): 596-600. |
[6] | Zi-wei WANG, Cheng-tao LI, Xi-ling LIU. Cross-Platform Application of DNA Methylation Age Estimation Model in Eastern Chinese Han Population [J]. Journal of Forensic Medicine, 2023, 39(5): 441-446. |
[7] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[8] | Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs [J]. Journal of Forensic Medicine, 2023, 39(4): 406-416. |
[9] | Yong-gang MA, Yong-jie CAO, Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG, Ji ZHANG. Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning [J]. Journal of Forensic Medicine, 2023, 39(2): 129-136. |
[10] | Hong-xia HAO, Ya-hui WANG, Zhi-lu ZHOU, Tai-ang LIU, Jin CHEN, Yu-heng HE, Lei WAN, Wen-tao XIA. Research Progress of Age Estimation in the Living by Knee Joint MRI [J]. Journal of Forensic Medicine, 2023, 39(1): 66-71. |
[11] | Zi-wei WANG, Qian-nan XU, Cheng-tao LI, Xi-ling LIU. Age Estimation Based on DNA Methylation and Its Application Prospects in Forensic Medicine [J]. Journal of Forensic Medicine, 2023, 39(1): 72-82. |
[12] | Xiao-tong YANG, Cheng-hui SUN, Yong-gang MA, Yong-jie CAO, Jian XIONG, Ji ZHANG, Ping HUANG. Sex Estimation of Han Adults in Western China Based on Three-Dimensional Cranial CT Reconstruction [J]. Journal of Forensic Medicine, 2023, 39(1): 27-33. |
[13] | Jing-jing MA, Min SHANG, Da-wei QIN, Wen-zhao REN, Jia-yin SHI, Xiao-yun ZHAO, Ze-wei YAO, Fan LI. Relationship between the Height of Alveolar Bone Resorption and Sex and Age in Adolescents [J]. Journal of Forensic Medicine, 2022, 38(5): 589-594. |
[14] | Yan-ru XI, Yuan-xin LIU, Na FENG, Zhen GU, Jun-hong SUN, Jie CAO, Qian-qian JIN, Qiu-xiang DU. Application of Linear Regression Model of Gpnmb Gene in Rat Injury Time Estimation [J]. Journal of Forensic Medicine, 2022, 38(4): 468-472. |
[15] | Dong-chuan ZHANG, Geng FEI, Ting-ting CHEN, Lu-yi XU, De-lun YU, Tian-ye ZHANG. Comparison of Three Methods for Skeleton Age Estimation [J]. Journal of Forensic Medicine, 2022, 38(3): 319-323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||