Journal of Forensic Medicine ›› 2024, Vol. 40 ›› Issue (2): 154-163.DOI: 10.12116/j.issn.1004-5619.2023.231003
Previous Articles Next Articles
Huai-han ZHANG1,2(), Yong-jie CAO2,3(
), Ji ZHANG2, Jian XIONG2,4, Ji-wei MA2,5, Xiao-tong YANG1,2, Ping HUANG2(
), Yong-gang MA6(
)
Received:
2023-10-30
Online:
2024-06-07
Published:
2024-04-25
Contact:
Ping HUANG, Yong-gang MA
CLC Number:
Huai-han ZHANG, Yong-jie CAO, Ji ZHANG, Jian XIONG, Ji-wei MA, Xiao-tong YANG, Ping HUANG, Yong-gang MA. Adults Ischium Age Estimation Based on Deep Learning and 3D CT Reconstruction[J]. Journal of Forensic Medicine, 2024, 40(2): 154-163.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2023.231003
年龄段/岁 | 男性 | 女性 | 合计 | |||
---|---|---|---|---|---|---|
训练及验证集 | 测试集 | 训练及验证集 | 测试集 | |||
合计 | 500 | 100 | 500 | 100 | 1 200 | |
20.0~<30.0 | 62 | 10 | 58 | 17 | 147 | |
30.0~<40.0 | 88 | 14 | 78 | 11 | 191 | |
40.0~<50.0 | 106 | 23 | 97 | 21 | 247 | |
50.0~<60.0 | 91 | 22 | 108 | 18 | 239 | |
60.0~<70.0 | 88 | 13 | 76 | 23 | 200 | |
70.0~80.0 | 65 | 18 | 83 | 10 | 176 |
Tab. 1 Population distribution of training and validation sets and test sets in each age group of male and female
年龄段/岁 | 男性 | 女性 | 合计 | |||
---|---|---|---|---|---|---|
训练及验证集 | 测试集 | 训练及验证集 | 测试集 | |||
合计 | 500 | 100 | 500 | 100 | 1 200 | |
20.0~<30.0 | 62 | 10 | 58 | 17 | 147 | |
30.0~<40.0 | 88 | 14 | 78 | 11 | 191 | |
40.0~<50.0 | 106 | 23 | 97 | 21 | 247 | |
50.0~<60.0 | 91 | 22 | 108 | 18 | 239 | |
60.0~<70.0 | 88 | 13 | 76 | 23 | 200 | |
70.0~80.0 | 65 | 18 | 83 | 10 | 176 |
模型 | 性别 | 部位 | MAE/岁 | RMSE/岁 | MBE/岁 | AE<5% | AE<10% |
---|---|---|---|---|---|---|---|
初始模型 | 男性 | 左侧 | 7.76/9.13 | 10.12/11.27 | -0.16/-1.52 | 40.00%/36.00% | 71.00%/56.00% |
右侧 | 7.88/9.18 | 10.53/11.62 | -1.26/-3.25 | 43.60%/37.00% | 71.80%/57.00% | ||
双侧 | 7.58/8.59 | 9.90/10.90 | -0.62/-2.02 | 44.00%/40.00% | 72.30%/63.50% | ||
女性 | 左侧 | 7.24/7.49 | 9.22/9.24 | -0.12/0.97 | 45.00%/41.00% | 73.80%/70.00% | |
右侧 | 7.60/7.71 | 9.58/9.47 | -0.99/-1.92 | 42.80%/39.00% | 73.80%/69.00% | ||
双侧 | 6.84/7.40 | 8.70/9.02 | -1.07/-1.55 | 46.60%/37.50% | 74.60%/71.50% | ||
混合性别 | 左侧 | 7.48/8.17 | 9.58/10.11 | -0.92/-1.58 | 43.90%/35.50% | 72.20%/66.50% | |
右侧 | 7.59/7.75 | 9.56/9.77 | -0.39/-1.55 | 40.90%/40.50% | 72.00%/70.00% | ||
双侧 | 7.17/7.67 | 9.21/9.69 | -0.82/-1.61 | 45.30%/42.00% | 73.70%/69.50% | ||
迁移模型 | 男性 | 左侧 | 6.72/8.28 | 8.85/10.41 | -0.50/-1.99 | 49.40%/42.00% | 79.20%/60.00% |
右侧 | 6.91/7.80 | 8.99/9.86 | -1.11/-2.28 | 46.80%/40.00% | 75.40%/71.00% | ||
双侧 | 6.26/7.74 | 8.14/9.73 | -0.42/-1.74 | 51.10%/39.00% | 78.80%/67.00% | ||
女性 | 左侧 | 5.99/6.62 | 7.72/7.94 | -0.63/0.21 | 51.40%/42.00% | 82.00%/78.00% | |
右侧 | 5.92/6.37 | 7.51/8.21 | 0.29/0.02 | 50.20%/50.00% | 81.60%/77.00% | ||
双侧 | 5.60/6.27 | 7.19/7.82 | -0.26/-0.11 | 55.00%/45.50% | 83.50%/81.00% | ||
混合性别 | 左侧 | 6.19/7.26 | 8.05/9.05 | -0.68/-1.13 | 51.60%/40.50% | 80.50%/74.00% | |
右侧 | 6.18/6.74 | 8.03/8.72 | -0.41/-0.91 | 51.00%/47.50% | 79.40%/76.00% | ||
双侧 | 6.04/6.64 | 7.85/8.43 | -0.67/-1.09 | 53.10%/46.00% | 80.90%/77.75% |
Tab. 2 Prediction results of the initial model and the transfer learning modelin validation sets and test sets of different sexes and sites
模型 | 性别 | 部位 | MAE/岁 | RMSE/岁 | MBE/岁 | AE<5% | AE<10% |
---|---|---|---|---|---|---|---|
初始模型 | 男性 | 左侧 | 7.76/9.13 | 10.12/11.27 | -0.16/-1.52 | 40.00%/36.00% | 71.00%/56.00% |
右侧 | 7.88/9.18 | 10.53/11.62 | -1.26/-3.25 | 43.60%/37.00% | 71.80%/57.00% | ||
双侧 | 7.58/8.59 | 9.90/10.90 | -0.62/-2.02 | 44.00%/40.00% | 72.30%/63.50% | ||
女性 | 左侧 | 7.24/7.49 | 9.22/9.24 | -0.12/0.97 | 45.00%/41.00% | 73.80%/70.00% | |
右侧 | 7.60/7.71 | 9.58/9.47 | -0.99/-1.92 | 42.80%/39.00% | 73.80%/69.00% | ||
双侧 | 6.84/7.40 | 8.70/9.02 | -1.07/-1.55 | 46.60%/37.50% | 74.60%/71.50% | ||
混合性别 | 左侧 | 7.48/8.17 | 9.58/10.11 | -0.92/-1.58 | 43.90%/35.50% | 72.20%/66.50% | |
右侧 | 7.59/7.75 | 9.56/9.77 | -0.39/-1.55 | 40.90%/40.50% | 72.00%/70.00% | ||
双侧 | 7.17/7.67 | 9.21/9.69 | -0.82/-1.61 | 45.30%/42.00% | 73.70%/69.50% | ||
迁移模型 | 男性 | 左侧 | 6.72/8.28 | 8.85/10.41 | -0.50/-1.99 | 49.40%/42.00% | 79.20%/60.00% |
右侧 | 6.91/7.80 | 8.99/9.86 | -1.11/-2.28 | 46.80%/40.00% | 75.40%/71.00% | ||
双侧 | 6.26/7.74 | 8.14/9.73 | -0.42/-1.74 | 51.10%/39.00% | 78.80%/67.00% | ||
女性 | 左侧 | 5.99/6.62 | 7.72/7.94 | -0.63/0.21 | 51.40%/42.00% | 82.00%/78.00% | |
右侧 | 5.92/6.37 | 7.51/8.21 | 0.29/0.02 | 50.20%/50.00% | 81.60%/77.00% | ||
双侧 | 5.60/6.27 | 7.19/7.82 | -0.26/-0.11 | 55.00%/45.50% | 83.50%/81.00% | ||
混合性别 | 左侧 | 6.19/7.26 | 8.05/9.05 | -0.68/-1.13 | 51.60%/40.50% | 80.50%/74.00% | |
右侧 | 6.18/6.74 | 8.03/8.72 | -0.41/-0.91 | 51.00%/47.50% | 79.40%/76.00% | ||
双侧 | 6.04/6.64 | 7.85/8.43 | -0.67/-1.09 | 53.10%/46.00% | 80.90%/77.75% |
年龄段/岁 | 男性 | 女性 | 混合性别 |
---|---|---|---|
20.0~<30.0 | 6.41/6.01 | 4.79/4.69 | 4.59/4.36 |
30.0~<40.0 | 5.64/1.97 | 4.08/2.54 | 4.85/2.09 |
40.0~<50.0 | 6.29/1.60 | 5.51/2.80 | 6.04/2.09 |
50.0~<60.0 | 7.41/0.26 | 4.94/0.93 | 5.95/0.42 |
60.0~<70.0 | 8.34/-7.81 | 8.52/-5.97 | 8.56/-6.88 |
70.0~80.0 | 11.97/-11.28 | 9.96/-5.69 | 9.67/-8.89 |
Tab. 3 Prediction results (MAE and MBE) of bilateral transfer learning model ofdifferent sexes composition in different age groups of the test sets
年龄段/岁 | 男性 | 女性 | 混合性别 |
---|---|---|---|
20.0~<30.0 | 6.41/6.01 | 4.79/4.69 | 4.59/4.36 |
30.0~<40.0 | 5.64/1.97 | 4.08/2.54 | 4.85/2.09 |
40.0~<50.0 | 6.29/1.60 | 5.51/2.80 | 6.04/2.09 |
50.0~<60.0 | 7.41/0.26 | 4.94/0.93 | 5.95/0.42 |
60.0~<70.0 | 8.34/-7.81 | 8.52/-5.97 | 8.56/-6.88 |
70.0~80.0 | 11.97/-11.28 | 9.96/-5.69 | 9.67/-8.89 |
1 | 占梦军,张世杰,陈虎,等. 骨龄自动化评估的研究进展[J].法医学杂志,2020,36(2):249-255. doi:10.12116/j.issn.1004-5619.2020.02.019 . |
ZHAN M J, ZHANG S J, CHEN H, et al. Research progress on automatic assessment of bone age[J]. Fa-yixue Zazhi,2020,36(2):249-255. | |
2 | GARVIN H M, PASSALACQUA N V. Current practices by forensic anthropologists in adult skeletal age estimation[J]. J Forensic Sci,2012,57(2):427-433. doi:10.1111/j.1556-4029.2011.01979.x . |
3 | GARVIN H M, PASSALACQUA N V, UHL N M, et al. Developments in forensic anthropology: Age-at-death estimation[M]// DIRKMAAT D. A Companion to forensic anthropology, Malden, Massachusetts: Wiley-Blackwell,2012:202-223. |
4 | MÁRQUEZ-GRANT N. An overview of age estimation in forensic anthropology: Perspectives and practical considerations[J]. Ann Hum Biol,2015,42(4):308-322. doi:10.3109/03014460.2015.1048288 . |
5 | 裘诗文,涂梦,范飞,等. 应用颅缝薄层CT扫描推断汉族成人年龄[J].法医学杂志,2020,36(4):507-513. doi:10.12116/j.issn.1004-5619.2020.04.015 . |
QIU S W, TU M, FAN F, et al. Age estimation in Han adults by thin-layer CT scan of cranial sutures[J]. Fayixue Zazhi,2020,36(4):507-513. | |
6 | GUO Y C, WANG Y H, OLZE A, et al. Dental age estimation based on the radiographic visibility of the periodontal ligament in the lower third molars: Application of a new stage classification[J]. Int J Legal Med,2020,134(1):369-374. doi:10.1007/s00414-019-02178-y . |
7 | LU T, DIAO Y R, TANG X E, et al. Deep learning enables automatic adult age estimation based on CT reconstruction images of the costal cartilage[J]. Eur Radiol,2023,33(11):7519-7529. doi:10.1007/s00330-023-09761-3 . |
8 | 熊剪,曹永杰,马永刚,等. 基于机器学习和CT三维重建技术的成人耻骨联合年龄推断[J].复旦学报(医学版),2023,50(5):731-742. doi:10.3969/j.issn.1672-8467.2023.05.012 . |
XIONG J, CAO Y J, MA Y G, et al. A method based on CT three-dimensional reconstruction and machine learning for age estimation of pubic symphysis in adults[J]. Fudan Xuebao (Medical sciences),2023,50(5):731-742. | |
9 | LISTI G A. The use of entheseal changes in the femur and os coxa for age assessment[J]. J Forensic Sci,2016,61(1):12-18. doi:10.1111/1556-4029.12905 . |
10 | ZHANG K, DONG X A, CHEN X G, et al. The ossification of the ischial tuberosity for forensic age diagnostics in conventional radiography[J]. Aust J Forensic Sci,2014,46(4):455-462. doi:10.1080/00450618.2014.891652 . |
11 | SCHEUER L. Application of osteology to forensic medicine[J]. Clin Anat,2002,15(4):297-312. doi:10 . |
1002/ca.10028. | |
12 | STEYN M, BECKER P J, L’ABBÉ E N, et al. An assessment of the repeatability of pubic and ischial measurements[J]. Forensic Sci Int,2012,214(1/2/3):210.e1-210.e4. doi:10.1016/j.forsciint.2011.07.049 . |
13 | RISSECH C, GARCÍA M, MALGOSA A. Sex and age diagnosis by ischium morphometric analysis[J]. Forensic Sci Int,2003,135(3):188-196. doi:10.1016/s0379-0738(03)00215-9 . |
14 | TORIMITSU S, MAKINO Y, SAITOH H, et al. Stature estimation in Japanese cadavers based on pelvic measurements in three-dimensional multidetector computed tomographic images[J]. Int J Legal Med,2015,129(3):633-639. doi:10.1007/s00414-014-1000-6 . |
15 | IMAIZUMI K, USUI S, TANIGUCHI K, et al. Development of an age estimation method for bones based on machine learning using post-mortem computed tomography images of bones[J]. Forensic Imag,2021,26:200477. doi:10.1016/j.fri.2021.200477 . |
16 | 马永刚,曹永杰,赵益花,等. 基于深度学习实现成人坐骨耻骨支内侧缘的性别推断[J].法医学杂志,2023,39(2):129-136,143. doi:10.12116/j.issn.1004-5619.2022.220505 . |
MA Y G, CAO Y J, ZHAO Y H, et al. Sex estimation of medial aspect of the ischiopubic ramus in adults based on deep learning[J]. Fayixue Zazhi,2023,39(2):129-136,143. | |
17 | XIONG J, MA Y, CAO Y, et al. Age estimation by modified Suchey-Brooks method using three-dimensional reconstructed CT images of Chinese Han population[J]. Leg Med (Tokyo),2023,65:102304. doi:10.1016/j.legalmed.2023.102304 . |
18 | 杨孝通,孙丞辉,马永刚,等. 基于CT三维重建技术推断西部地区汉族成人颅骨性别[J].法医学杂志,2023,39(1):27-33. doi:10.12116/j.issn.1004-5619.2022.220101 . |
YANG X T, SUN C H, MA Y G, et al. Sex estimation of Han adults in western China based on three-dimensional cranial CT reconstruction[J]. Fayi-xue Zazhi,2023,39(1):27-33. | |
19 | CAO Y, MA Y, VIEIRA D N, et al. A potential method for sex estimation of human skeletons using deep learning and three-dimensional surface scanning[J]. Int J Legal Med,2021,135(6):2409-2421. doi:10.1007/s00414-021-02675-z . |
20 | LECUN Y, BENGIO Y, HINTON G. Deep lear-ning[J]. Nature,2015,521(7553):436-444. doi:10.1038/nature14539 . |
21 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nevada, USA: Las Vegas,2016:27-30. |
22 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Trans Knowl Data Eng,2010,22(10):1345-1359. doi:10.1109/TKDE.2009.191 . |
23 | RODRIGUEZ J D, PEREZ A, LOZANO J A. Sensitivity analysis of k-fold cross validation in prediction error estimation[J]. IEEE Trans Pattern Anal Mach Intell,2010,32(3):569-575. doi:10.1109/TPAMI.2009.187 . |
24 | CALCE S E, ROGERS T L. Evaluation of age estimation technique: Testing traits of the acetabulum to estimate age at death in adult males[J]. J Forensic Sci,2011,56(2):302-311. doi:10.1111/j.1556-4029. 2011.01700.x . |
25 | KOLESOVA O, KOLESOVS A, VETRA J. Age-related trends of lesser pelvic architecture in females and males: A computed tomography pelvime-try study[J]. Anat Cell Biol,2017,50(4):265-274. doi:10.5115/acb.2017.50.4.265 . |
26 | MALLARD A M, SAVELL K R R, AUERBACH B M. Morphological integration of the human pelvis with respect to age and sex[J]. Anat Rec (Hoboken),2017,300(4):666-674. doi:10.1002/ar.23547 . |
27 | KONDOU H, MOROHASHI R, ICHIOKA H, et al. Deep neural networks-based age estimation of cadavers using CT imaging of vertebrae[J]. Int J Environ Res Public Health,2023,20(6):4806. doi:10.3390/ijerph20064806 . |
28 | SAN-MILLÁN M, RISSECH C, TURBÓN D. New approach to age estimation of male and female adult skeletons based on the morphological characteristics of the acetabulum[J]. Int J Legal Med,2017,131(2):501-525. doi:10.1007/s00414-016-1406-4 . |
29 | MAYS S. The effect of factors other than age upon skeletal age indicators in the adult[J]. Ann Hum Biol,2015,42(4):332-341. doi:10.3109/03014460.2015.1044470 . |
30 | MERRITT C E. The influence of body size on adult skeletal age estimation methods[J]. Am J Phys Anthropol,2015,156(1):35-57. doi:10.1002/ajpa.22626 . |
31 | LI Y, HUANG Z, DONG X, et al. Forensic age estimation for pelvic X-ray images using deep learning[J]. Eur Radiol,2019,29(5):2322-2329. doi:10.1007/s00330-018-5791-6 . |
32 | SHIN H C, ROTH H R, GAO M C, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging,2016,35(5):1285-1298. doi:10.1109/TMI.2016.2528162 . |
33 | TAJBAKHSH N, SHIN J Y, GURUDU S R, et al. Convolutional neural networks for medical image analysis: Full training or fine tuning?[J]. IEEE Trans Med Imaging,2016,35(5):1299-1312. doi:10.1109/TMI.2016.2535302 . |
34 | NAGATA T, TANIGUCHI K, OGAWA Y, et al. Age estimation from human skeleton by machine learning[C]// 2020 21st International Conference on Research and Education in Mechatronics (REM). Cracow, Poland,2020:1-4. doi:10.1109/REM49740.2020.9313896 . |
35 | 田雪梅,张继宗,闵建雄,等. 青少年骨关节X线片的骨龄研究[J].刑事技术,2001(2):6-11. |
TIAN X M, ZHANG J Z, MIN J X, et al. Legal age estimation of northern Chinese by skeletal maturity[J]. Xingshi Jishu,2001(2):6-11. | |
36 | 朱广友,王亚辉,万雷. 中国青少年骨龄鉴定标准图谱法[M].上海:上海科学技术文献出版社,2016:61-81. |
ZHU G Y, WANG Y H, WAN L. Determination of skeleton age for Chinese teenagers by standard radiographic atlas[M]. Shanghai: Shanghai Scientific and Technological Literature Press,2016:61-81. | |
37 | LOVEJOY C O, MEINDL R S, PRYZBECK T R, et al. Chronological metamorphosis of the auricular surface of the ilium: A new method for the determination of adult skeletal age at death[J]. Am J Phys Anthropol,1985,68(1):15-28. doi:10.1002/ajpa.1330680103 . |
38 | MILES A E W, BULMAN J S. Growth curves of immature bones from a Scottish island population of sixteenth to mid-nineteenth century: Shoulder girdle, ilium, pubis and ischium[J]. Int J Osteoarchaeol,1995,5(1):15-27. doi:10.1002/oa.1390050103 . |
[1] | Jia-xuan HAN, Shi-hui SHEN, Yi-wen WU, Xiao-dan SUN, Tian-nan CHEN, Jiang TAO. Adolescents and Children Age Estimation Using Machine Learning Based on Pulp and Tooth Volumes on CBCT Images [J]. Journal of Forensic Medicine, 2024, 40(2): 143-148. |
[2] | Lei SHI, Ye XUE, Li-rong QIU, Ting LU, Fei FAN, Yu-chi ZHOU, Zhen-hua DENG. Research Progress on Dental Age Estimation Based on MRI Technology [J]. Journal of Forensic Medicine, 2024, 40(2): 112-117. |
[3] | Xuan WEI, Yu-shan CHEN, Jie DING, Chang-xing SONG, Jun-jing WANG, Zhao PENG, Zhen-hua DENG, Xu YI, Fei FAN. Age Estimation by Machine Learning and CT-Multiplanar Reformation of Cranial Sutures in Northern Chinese Han Adults [J]. Journal of Forensic Medicine, 2024, 40(2): 128-134. |
[4] | Yu-xin GUO, Wen-qing BU, Yu TANG, Di WU, Hui YANG, Hao-tian MENG, Yu-cheng GUO. Dental Age Estimation in Northern Chinese Han Children and Adolescents Using Demirjian’s Method Combined with Machine Learning Algorithms [J]. Journal of Forensic Medicine, 2024, 40(2): 135-142. |
[5] | Dan-yang LI, Yu PAN, Hui-ming ZHOU, Lei WAN, Cheng-tao LI, Mao-wen WANG, Ya-hui WANG. Application of Medical Statistical and Machine Learning Methods in the Age Estimation of Living Individuals [J]. Journal of Forensic Medicine, 2024, 40(2): 118-127. |
[6] | De-min HUO, Kai-jun MA, Jing-lan XU, Xu SONG, Xiao-yan MAO, Xia LIU, Kai-fang ZHAO, Jian ZHANG, Meng DU. Determining Whether an Individual is 18 Years or Older Based on the Third Molar Root Pulp Visibility in East China [J]. Journal of Forensic Medicine, 2024, 40(2): 149-153. |
[7] | Yi-hang HUANG, Wei-bo LIANG, Hui JIAN, Sheng-qiu QU. Modeling Methods and Influencing Factors for Age Estimation Based on DNA Methylation [J]. Journal of Forensic Medicine, 2023, 39(6): 601-607. |
[8] | Xing-yu MA, Hao CHENG, Zhong-duo ZHANG, Ye-ming LI, Dong ZHAO. Research Progress of Metabolomics Techniques Combined with Machine Learning Algorithm in Wound Age Estimation [J]. Journal of Forensic Medicine, 2023, 39(6): 596-600. |
[9] | Zi-wei WANG, Cheng-tao LI, Xi-ling LIU. Cross-Platform Application of DNA Methylation Age Estimation Model in Eastern Chinese Han Population [J]. Journal of Forensic Medicine, 2023, 39(5): 441-446. |
[10] | Yong-gang MA, Yong-jie CAO, Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG, Ji ZHANG. Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning [J]. Journal of Forensic Medicine, 2023, 39(2): 129-136. |
[11] | Hong-xia HAO, Ya-hui WANG, Zhi-lu ZHOU, Tai-ang LIU, Jin CHEN, Yu-heng HE, Lei WAN, Wen-tao XIA. Research Progress of Age Estimation in the Living by Knee Joint MRI [J]. Journal of Forensic Medicine, 2023, 39(1): 66-71. |
[12] | Zi-wei WANG, Qian-nan XU, Cheng-tao LI, Xi-ling LIU. Age Estimation Based on DNA Methylation and Its Application Prospects in Forensic Medicine [J]. Journal of Forensic Medicine, 2023, 39(1): 72-82. |
[13] | Xiao-tong YANG, Cheng-hui SUN, Yong-gang MA, Yong-jie CAO, Jian XIONG, Ji ZHANG, Ping HUANG. Sex Estimation of Han Adults in Western China Based on Three-Dimensional Cranial CT Reconstruction [J]. Journal of Forensic Medicine, 2023, 39(1): 27-33. |
[14] | Jing-jing MA, Min SHANG, Da-wei QIN, Wen-zhao REN, Jia-yin SHI, Xiao-yun ZHAO, Ze-wei YAO, Fan LI. Relationship between the Height of Alveolar Bone Resorption and Sex and Age in Adolescents [J]. Journal of Forensic Medicine, 2022, 38(5): 589-594. |
[15] | Yan-ru XI, Yuan-xin LIU, Na FENG, Zhen GU, Jun-hong SUN, Jie CAO, Qian-qian JIN, Qiu-xiang DU. Application of Linear Regression Model of Gpnmb Gene in Rat Injury Time Estimation [J]. Journal of Forensic Medicine, 2022, 38(4): 468-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||