Journal of Forensic Medicine ›› 2023, Vol. 39 ›› Issue (6): 549-556.DOI: 10.12116/j.issn.1004-5619.2022.521204
• Original Articles • Previous Articles Next Articles
Ao HUANG1,2(), Shu-bo WEN1,2, Qian-qian KONG2, Zhen-min ZHAO2(
), Xi-ling LIU2(
)
Received:
2022-12-30
Online:
2024-01-17
Published:
2023-12-25
Contact:
Zhen-min ZHAO, Xi-ling LIU
CLC Number:
Ao HUANG, Shu-bo WEN, Qian-qian KONG, Zhen-min ZHAO, Xi-ling LIU. Proteomic Difference Analysis of Whole Blood and Bloodstains[J]. Journal of Forensic Medicine, 2023, 39(6): 549-556.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2022.521204
组别 | 样本 | 年龄/岁 | 平均年龄/岁 | 性别 | 血型 | 全血 | 血斑 |
---|---|---|---|---|---|---|---|
P1 | P1-1,P1-2,P1-3,P1-4,P1-5 | 25,25,25,26,28 | 26 | 女 | O型 | 全血-1 | 血斑-1 |
P2 | P2-1,P2-2,P2-3,P2-4,P2-5 | 25,26,27,29,47 | 30 | 男 | O型 | 全血-2 | 血斑-2 |
P3 | P3-1,P3-2,P3-3,P3-4,P3-5 | 25,26,26,26,28 | 26 | 男 | A型 | 全血-3 | 血斑-3 |
Tab. 1 Sample grouping information
组别 | 样本 | 年龄/岁 | 平均年龄/岁 | 性别 | 血型 | 全血 | 血斑 |
---|---|---|---|---|---|---|---|
P1 | P1-1,P1-2,P1-3,P1-4,P1-5 | 25,25,25,26,28 | 26 | 女 | O型 | 全血-1 | 血斑-1 |
P2 | P2-1,P2-2,P2-3,P2-4,P2-5 | 25,26,27,29,47 | 30 | 男 | O型 | 全血-2 | 血斑-2 |
P3 | P3-1,P3-2,P3-3,P3-4,P3-5 | 25,26,26,26,28 | 26 | 男 | A型 | 全血-3 | 血斑-3 |
编号 | 蛋白质 | Uniprot ID | 基因 | 亚细胞定位 | log2FC | -log10P | 变化趋势 |
---|---|---|---|---|---|---|---|
1 | 载脂蛋白C3 | P02656 | APOC3 | 分泌型 | 0.70 | 0.62 | ↑ |
2 | 核受体结合蛋白 | Q9UHY1 | NRBP1 | 胞质 | 0.72 | 1.52 | ↑ |
3 | 免疫球蛋白λ变量9-49 | A0A0B4J1Y8 | IGLV9-49 | 分泌型 | 26.00 | 10.15 | ↑ |
4 | 补体因子D | P00746 | CFD | 分泌型 | 23.57 | 11.08 | ↑ |
5 | 半胱氨酸蛋白酶抑制剂C | P01034 | CST3 | 分泌型 | 23.62 | 10.01 | ↑ |
6 | 核糖核苷二磷酸还原酶大亚基 | P23921 | RRM1 | 胞质 | 22.95 | 10.90 | ↑ |
7 | 根蛋白 | P35241 | RDX | 细胞膜 | 23.86 | 11.08 | ↑ |
8 | 肝细胞生长因子激活剂 | Q04756 | HGFAC | 分泌型 | 22.96 | 9.24 | ↑ |
9 | 自噬相关蛋白3 | Q9NT62 | ATG3 | 胞质 | 23.03 | 11.08 | ↑ |
10 | SEC14样蛋白4 | Q9UDX3 | SEC14L4 | 胞质 | 25.70 | 11.08 | ↑ |
11 | 铵转运体Rh A型 | Q02094 | RHAG | 浆膜 | -0.75 | 1.65 | ↓ |
12 | 胞质乙酰辅酶A硫脂水解酶 | O00154 | ACOT7 | 胞质 | -23.63 | 10.64 | ↓ |
13 | 26S蛋白酶体非ATP酶调节亚基3 | O43242 | PSMD3 | 细胞质基质 | -28.65 | 11.08 | ↓ |
14 | α-辅肌动蛋白-4 | O43707 | ACTN4 | 细胞核 | -24.56 | 8.25 | ↓ |
15 | 微管蛋白β链 | P07437 | TUBB | 胞质 | -23.18 | 10.93 | ↓ |
16 | 热激蛋白60 | P10809 | HSPD1 | 线粒体基质 | -24.89 | 6.97 | ↓ |
17 | 断裂点丛集区蛋白 | P11274 | BCR | 突触后致密区 | -26.77 | 8.89 | ↓ |
18 | 延伸因子2 | P13639 | EEF2 | 胞质 | -23.37 | 9.23 | ↓ |
19 | 连接桥粒斑珠蛋白 | P14923 | JUP | 细胞连接处 | -22.95 | 6.37 | ↓ |
20 | 异质性细胞核核糖蛋白A2/B1 | P22626 | HNRNPA2B1 | 细胞核 | -23.07 | 8.36 | ↓ |
21 | 甘露聚糖结合凝集素丝氨酸蛋白酶1 | P48740 | MASP1 | 分泌型 | -24.09 | 10.15 | ↓ |
22 | X连锁Kx血型抗原 | P51811 | XK | 内质网膜 | -24.34 | 11.08 | ↓ |
23 | Epiplakin | P58107 | EPPK1 | 细胞骨架 | -23.05 | 6.85 | ↓ |
24 | 转化蛋白RhoA | P61586 | RHOA | 细胞膜 | -25.39 | 11.08 | ↓ |
25 | 免疫球蛋白结合蛋白1 | P78318 | IGBP1 | 胞质 | -23.11 | 10.38 | ↓ |
26 | 1,4-α-葡聚糖分支酶 | Q04446 | GBE1 | 胞质 | -22.60 | 11.08 | ↓ |
27 | 细胞间黏附分子4 | Q14773 | ICAM4 | 细胞膜 | -24.15 | 11.08 | ↓ |
28 | 多聚C结合蛋白1 | Q15365 | PCBP1 | 细胞核 | -24.62 | 10.22 | ↓ |
29 | 含NudC结构域的蛋白质2 | Q8WVJ2 | NUDCD2 | 染色体 | -24.24 | 11.08 | ↓ |
30 | 羧肽酶B2 | Q96IY4 | CPB2 | 分泌型 | -24.54 | 10.64 | ↓ |
31 | Rabankyrin-5 | Q9P2R3 | ANKFY1 | 细胞膜 | -22.81 | 11.08 | ↓ |
Tab. 2 Differential proteins in the whole blood and bloodstains andthe corresponding information of subcellular localization
编号 | 蛋白质 | Uniprot ID | 基因 | 亚细胞定位 | log2FC | -log10P | 变化趋势 |
---|---|---|---|---|---|---|---|
1 | 载脂蛋白C3 | P02656 | APOC3 | 分泌型 | 0.70 | 0.62 | ↑ |
2 | 核受体结合蛋白 | Q9UHY1 | NRBP1 | 胞质 | 0.72 | 1.52 | ↑ |
3 | 免疫球蛋白λ变量9-49 | A0A0B4J1Y8 | IGLV9-49 | 分泌型 | 26.00 | 10.15 | ↑ |
4 | 补体因子D | P00746 | CFD | 分泌型 | 23.57 | 11.08 | ↑ |
5 | 半胱氨酸蛋白酶抑制剂C | P01034 | CST3 | 分泌型 | 23.62 | 10.01 | ↑ |
6 | 核糖核苷二磷酸还原酶大亚基 | P23921 | RRM1 | 胞质 | 22.95 | 10.90 | ↑ |
7 | 根蛋白 | P35241 | RDX | 细胞膜 | 23.86 | 11.08 | ↑ |
8 | 肝细胞生长因子激活剂 | Q04756 | HGFAC | 分泌型 | 22.96 | 9.24 | ↑ |
9 | 自噬相关蛋白3 | Q9NT62 | ATG3 | 胞质 | 23.03 | 11.08 | ↑ |
10 | SEC14样蛋白4 | Q9UDX3 | SEC14L4 | 胞质 | 25.70 | 11.08 | ↑ |
11 | 铵转运体Rh A型 | Q02094 | RHAG | 浆膜 | -0.75 | 1.65 | ↓ |
12 | 胞质乙酰辅酶A硫脂水解酶 | O00154 | ACOT7 | 胞质 | -23.63 | 10.64 | ↓ |
13 | 26S蛋白酶体非ATP酶调节亚基3 | O43242 | PSMD3 | 细胞质基质 | -28.65 | 11.08 | ↓ |
14 | α-辅肌动蛋白-4 | O43707 | ACTN4 | 细胞核 | -24.56 | 8.25 | ↓ |
15 | 微管蛋白β链 | P07437 | TUBB | 胞质 | -23.18 | 10.93 | ↓ |
16 | 热激蛋白60 | P10809 | HSPD1 | 线粒体基质 | -24.89 | 6.97 | ↓ |
17 | 断裂点丛集区蛋白 | P11274 | BCR | 突触后致密区 | -26.77 | 8.89 | ↓ |
18 | 延伸因子2 | P13639 | EEF2 | 胞质 | -23.37 | 9.23 | ↓ |
19 | 连接桥粒斑珠蛋白 | P14923 | JUP | 细胞连接处 | -22.95 | 6.37 | ↓ |
20 | 异质性细胞核核糖蛋白A2/B1 | P22626 | HNRNPA2B1 | 细胞核 | -23.07 | 8.36 | ↓ |
21 | 甘露聚糖结合凝集素丝氨酸蛋白酶1 | P48740 | MASP1 | 分泌型 | -24.09 | 10.15 | ↓ |
22 | X连锁Kx血型抗原 | P51811 | XK | 内质网膜 | -24.34 | 11.08 | ↓ |
23 | Epiplakin | P58107 | EPPK1 | 细胞骨架 | -23.05 | 6.85 | ↓ |
24 | 转化蛋白RhoA | P61586 | RHOA | 细胞膜 | -25.39 | 11.08 | ↓ |
25 | 免疫球蛋白结合蛋白1 | P78318 | IGBP1 | 胞质 | -23.11 | 10.38 | ↓ |
26 | 1,4-α-葡聚糖分支酶 | Q04446 | GBE1 | 胞质 | -22.60 | 11.08 | ↓ |
27 | 细胞间黏附分子4 | Q14773 | ICAM4 | 细胞膜 | -24.15 | 11.08 | ↓ |
28 | 多聚C结合蛋白1 | Q15365 | PCBP1 | 细胞核 | -24.62 | 10.22 | ↓ |
29 | 含NudC结构域的蛋白质2 | Q8WVJ2 | NUDCD2 | 染色体 | -24.24 | 11.08 | ↓ |
30 | 羧肽酶B2 | Q96IY4 | CPB2 | 分泌型 | -24.54 | 10.64 | ↓ |
31 | Rabankyrin-5 | Q9P2R3 | ANKFY1 | 细胞膜 | -22.81 | 11.08 | ↓ |
1 | MÜLLER J B, GEYER P E, COLAÇO A R, et al. The proteome landscape of the kingdoms of life[J]. Nature,2020,582(7813):592-596. doi:10.1038/s41586-020-2402-x . |
2 | UHLÉN M, BJÖRLING E, AGATON C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics[J]. Mol Cell Proteomics,2005,4(12):1920-1932. doi:10.1074/mcp.M500279-MCP200 . |
3 | OMENN G S, LANE L, OVERALL C M, et al. Progress on identifying and characterizing the human proteome: 2018 metrics from the HUPO human proteome project[J]. J Proteome Res,2018,17(12):4031-4041. doi:10.1021/acs.jproteome.8b00441 . |
4 | SUHRE K, MCCARTHY M I, SCHWENK J M. Genetics meets proteomics: Perspectives for large population-based studies[J]. Nat Rev Genet,2021, 22(1):19-37. doi:10.1038/s41576-020-0268-2 . |
5 | ZHONG W, EDFORS F, GUMMESSON A, et al. Next generation plasma proteome profiling to monitor health and disease[J]. Nat Commun,2021,12(1):2493. doi:10.1038/s41467-021-22767-z . |
6 | LEGG K M, POWELL R, REISDORPH N, et al. Verification of protein biomarker specificity for the identification of biological stains by quadrupole time-of-flight mass spectrometry[J]. Electrophoresis,2017,38(6):833-845. doi:10.1002/elps.201600352 . |
7 | LEHALLIER B, GATE D, SCHAUM N, et al. Undulating changes in human plasma proteome profiles across the lifespan[J]. Nat Med,2019,25(12):1843-1850. doi:10.1038/s41591-019-0673-2 . |
8 | PALAGUMMI S, HARBISON S, FLEMING R. A time-course analysis of mRNA expression during injury healing in human dermal injuries[J]. Int J Legal Med,2014,128(3):403-414. doi:10.1007/s00414-013-0941-5 . |
9 | 韩刘君,徐红梅,陈龙. 蛋白质组学及其在法医病理学中的应用[J].法医学杂志,2019,35(1):78-83. doi:10.12116/j.issn.1004-5619.2019.01.015 . |
HAN L J, XU H M, CHEN L. Proteomics and its application in forensic pathology[J]. Fayixue Zazhi,2019,35(1):78-83. | |
10 | 张旭东,姜垚如,梁芯瑞,等. 蛋白质芯片检测技术结合多维统计方法推断死亡时间[J].法医学杂志,2023,39(2):115-120,128. doi:10.12116/j.issn.1004-5619.2022.420407 . |
ZHANG X D, JIANG Y R, LIANG X R, et al. Postmortem interval estimation using protein chip techno-logy combined with multivariate analysis methods[J]. Fayixue Zazhi,2023,39(2):115-120,128. | |
11 | DÍAZ MARTÍN R D, CAMACHO-MARTÍNEZ Z, AMBROSIO HERNÁNDEZ J R, et al. Proteomics as a new tool in forensic sciences[J]. Span J Leg Med,2019,45(3):114-122. doi:10.1016/j.remle.2019.08.001 . |
12 | DOTY K C, MURO C K, LEDNEV I K. Predicting the time of the crime: Bloodstain aging estimation for up to two years[J]. Forensic Chem,2017,5:1-7. doi:10.1016/j.forc.2017.05.002 . |
13 | BJÖRKESTEN J, ENROTH S, SHEN Q, et al. Stability of proteins in dried blood spot biobanks[J]. Mol Cell Proteomics,2017,16(7):1286-1296. doi:10 . |
1074/mcp.RA117.000015. | |
14 | KIM J Y, PARK J H, KIM M I, et al. Identification of female-specific blood stains using a 17β- estradiol-targeted aptamer-based sensor[J]. Int J Legal Med,2018,132(1):91-98. doi:10.1007/s00414-017-1718-z . |
15 | JACKSON S, FREY B S, BATES M N, et al. Direct differentiation of whole blood for forensic serology analysis by thread spray mass spectrometry[J]. Analyst,2020,145(16):5615-5623. doi:10.1039/d0an00857e . |
16 | ESHGHI A, PISTAWKA A J, LIU J, et al. Concentration determination of >200 proteins in dried blood spots for biomarker discovery and validation[J]. Mol Cell Proteomics,2020,19(3):540-553. doi:10 . |
1074/mcp.TIR119.001820. | |
17 | WIŚNIEWSKI J R. Filter-aided sample preparation for proteome analysis[J]. Methods Mol Biol,2018,1841:3-10. doi:10.1007/978-1-4939-8695-8_1 . |
18 | ZHU W, SMITH J W, HUANG C M. Mass spec-trometry-based label-free quantitative proteomics[J]. J Biomed Biotechnol,2010,2010:840518. doi:10.1155/2010/840518 . |
19 | SHERMAN B T, HAO M, QIU J, et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res,2022,50(W1):W216-W221. doi:10.1093/nar/gkac194 . |
20 | CONSORTIUM U. UniProt: The universal protein knowledgebase in 2021[J]. Nucleic Acids Res,2021,49(D1):D480-D489. doi:10.1093/nar/gkaa1100 . |
21 | VAN WIJK K J, LEPPERT T, SUN Q, et al. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource[J]. Plant Cell,2021,33(11):3421-3453. doi:10.1093/plcell/koab211 . |
22 | DEUTSCH E W, OMENN G S, SUN Z, et al. Advances and utility of the human plasma proteome[J]. J Proteome Res,2021,20(12):5241-5263. doi:10 . |
1021/acs.jproteome.1c00657. | |
23 | OSTAN R, MONTI D, GUERESI P, et al. Gender, aging and longevity in humans: An update of an intriguing/neglected scenario paving the way to a gender-specific medicine[J]. Clin Sci (Lond),2016,130(19):1711-1725. doi:10.1042/CS20160004 . |
24 | ARSENE C G, OHLENDORF R, BURKITT W, et al. Protein quantification by isotope dilution mass spectrometry of proteolytic fragments: Cleavage rate and accuracy[J]. Anal Chem,2008,80(11):4154-4160. doi:10.1021/ac7024738 . |
25 | BROWNRIDGE P, BEYNON R J. The importance of the digest: Proteolysis and absolute quantification in proteomics[J]. Methods,2011,54(4):351-360. doi:10.1016/j.ymeth.2011.05.005 . |
26 | CHAMBERS A G, PERCY A J, YANG J, et al. Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring-mass spectrometry[J]. Mol Cell Proteomics,2013,12(3):781-791. doi:10.1074/mcp.M112.022442 . |
27 | ROSTING C, GJELSTAD A, HALVORSEN T G. Water-soluble dried blood spot in protein analysis: A proof-of-concept study[J]. Anal Chem,2015,87(15):7918-7924. doi:10.1021/acs.analchem.5b01735 . |
28 | THOLEY A, BECKER A. Top-down proteomics for the analysis of proteolytic events -- Methods, applications and perspectives[J]. Biochim Biophys Acta Mol Cell Res,2017,1864(11 Pt B):2191-2199. doi:10.1016/j.bbamcr.2017.07.002 . |
29 | CORADIN M, KARCH K R, GARCIA B A. Monitoring proteolytic processing events by quantitative mass spectrometry[J]. Expert Rev Proteomics,2017,14(5):409-418. doi:10.1080/14789450.2017.1316977 . |
30 | CIZDZIEL J V. Determination of lead in blood by laser ablation ICP-TOF-MS analysis of blood spotted and dried on filter paper: A feasibility study[J]. Anal Bioanal Chem,2007,388(3):603-611. doi:10.1007/s00216-007-1242-y . |
31 | COWANS N J, SUONPAA M, KOURU H, et al. Evaluation of a dried blood spot assay to measure prenatal screening markers pregnancy-associated plas-ma protein a and free β-subunit of human chorionic gonadotropin[J]. Clin Chem,2013,59(6):968-975. doi: |
32 | 1373/clinchem.2012.194894. |
33 | TSUJITA K, TAKENAWA T, ITOH T. Feedback regulation between plasma membrane tension and membrane-bending proteins organizes cell polarity during leading edge formation[J]. Nat Cell Biol,2015,17(6):749-758. doi:10.1038/ncb3162 . |
34 | ANDERSON N L, ANDERSON N G. The human plasma proteome: History, character, and diagnostic prospects[J]. Mol Cell Proteomics,2002,1(11):845-867. doi:10.1074/mcp.r200007-mcp200 . |
35 | SCHILLING B, RARDIN M J, MACLEAN B X, et al. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: Application to protein acetylation and phosphorylation[J]. Mol Cell Proteomics,2012,11(5):202-214. doi:10.1074/mcp.M112.017707 . |
36 | ZHAO L, CONG X, ZHAI L, et al. Comparative evaluation of label-free quantification strategies[J]. J Proteomics,2020,215:103669. doi:10.1016/j.jprot.2020.103669 . |
37 | LI Z, CHEN D, WANG Q, et al. mRNA and micro-RNA stability validation of blood samples under different environmental conditions[J]. Forensic Sci Int Genet,2021,55:102567. doi:10.1016/j.fsigen.2021.102567 . |
38 | ALBANI P P, FLEMING R. Novel messenger RNAs for body fluid identification[J]. Sci Justice,2018,58(2):145-152. doi:10.1016/j.scijus.2017.09.002 . |
39 | SONG F, LUO H, HOU Y. Developed and evaluated a multiplex mRNA profiling system for body fluid identification in Chinese Han population[J]. J Forensic Leg Med,2015,35:73-80. doi:10.1016/j.jflm.2015.08.006 . |
40 | HEO T M, GWON S Y, YANG J H, et al. Hemoglobin subunit beta protein as a novel marker for time since deposition of bloodstains at crime scenes[J]. Forensic Sci Int,2022,336:111348. doi:10.1016/j.forsciint.2022.111348 . |
41 | HANSON E, INGOLD S, HAAS C, et al. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing[J]. Forensic Sci Int Genet,2018,34:206-221. doi:10.1016/j.fsigen.2018.02.020 . |
42 | ZUBAKOV D, LIU F, KOKMEIJER I, et al. Human age estimation from blood using mRNA, DNA methy-lation, DNA rearrangement, and telomere length[J]. Forensic Sci Int Genet,2016,24:33-43. doi:10.1016/j.fsigen.2016.05.014 . |
43 | WIKLUND F E, BENNET A M, MAGNUSSON P K E, et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): A new marker of all-cause mortality[J]. Aging Cell,2010,9(6):1057-1064. doi:10.1111/j.1474- |
9726.2010.00629.x. | |
44 | COHEN E, DILLIN A. The insulin paradox: Aging, proteotoxicity and neurodegeneration[J]. Nat Rev Neurosci,2008,9(10):759-767. doi:10.1038/nrn2474 . |
[1] | Xing HAN, Xin LIU, Ming-luo DU, Ruo-lun XU, Jia-rong LI, Chao LIU, Wei-guo LIU. UPLC-MS/MS Method for Detection of Etomidate and Its Metabolite Etomidate Acid Quantity in Blood [J]. Journal of Forensic Medicine, 2023, 39(6): 564-570. |
[2] | Xing-yu MA, Hao CHENG, Zhong-duo ZHANG, Ye-ming LI, Dong ZHAO. Research Progress of Metabolomics Techniques Combined with Machine Learning Algorithm in Wound Age Estimation [J]. Journal of Forensic Medicine, 2023, 39(6): 596-600. |
[3] | Ying LI, Yong YU, Xing-hua KOU, Zhan-long HAN. Forensic Analysis of Eighteen Tubal Pregnancy-Related Medical Damage [J]. Journal of Forensic Medicine, 2023, 39(6): 571-578. |
[4] | Hong-xia HAO, Jie-min CHEN, Rong-rong WANG, Xiao-ying YU, Meng WANG, Zhi-lu ZHOU, Yan-liang SHENG, Wen-tao XIA. The Value of VR-PVEP in Objective Evaluation of Monocular Refractive Visual Impairment [J]. Journal of Forensic Medicine, 2023, 39(4): 382-387. |
[5] | Jie BAI, Jing SUN, Xiao-guang CHENG, Fan LIU, Hua LIU, Xu WANG. Construction and Application of Rib Fracture Diagnosis Model Based on YOLOv3 Algorithm [J]. Journal of Forensic Medicine, 2023, 39(4): 343-349. |
[6] | Fei FAN, Juan WU, Zhen-hua DENG. Application Progress of Objective Audiological Detection Techniques in Forensic Clinical Medicine [J]. Journal of Forensic Medicine, 2023, 39(4): 360-366. |
[7] | Jian XIANG, Xu WANG, Li-li YU, Kang-jia JIN, Ying-kai YANG. Objective Assessment of Visual Field Defects Caused by Optic Chiasm and Its Posterior Visual Pathway Injury [J]. Journal of Forensic Medicine, 2023, 39(4): 350-359. |
[8] | Zhang-ming GAO, Jing-yu SHI, Hao ZENG, Xue-jun ZHANG. Rapid Determination of Bucinnazine in Blood by UPLC-MS/MS [J]. Journal of Forensic Medicine, 2023, 39(4): 388-392. |
[9] | Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs [J]. Journal of Forensic Medicine, 2023, 39(4): 406-416. |
[10] | Xu WANG. Legal Theories, Disability Models and Principles of Disability Assessment [J]. Journal of Forensic Medicine, 2023, 39(4): 329-336. |
[11] | Hao-yang WANG, Jian WU, Qian ZHANG, Xin-feng MIN, Xiu-yan LIU, Yin-long GUO. Structural Analysis and Characterization of 4-F-α-PVP Analog 4-F-3-Methyl-α- PVP Hydrochloride [J]. Journal of Forensic Medicine, 2023, 39(2): 144-150. |
[12] | Hang CHEN, Jing HU, Zheng QIAO, Hong-xiao DENG, Min LÜ, Wei LIU. Research Progress on Biological Matrix Reference Materials in Forensic Toxicology [J]. Journal of Forensic Medicine, 2023, 39(2): 176-185. |
[13] | Jiao-jiao JI, Duo-qi XU, Ping XIANG, Hui YAN, Min SHEN. Analysis of Forty-Two Psychoactive Substances in a Single Hair by Micro-Segmental Technique [J]. Journal of Forensic Medicine, 2023, 39(2): 151-160. |
[14] | Zhong-ping CHENG, Yan-fei LIU, Xing-min XU, Yao-nan MO. Progress in the Application of Magnetic Nanoparticles in Forensic Trace Analysis [J]. Journal of Forensic Medicine, 2023, 39(2): 168-175. |
[15] | Jiang-wei YAN, Jun-hong SUN, Hong-xing WANG, Zhi-wen WEI, Xiang-jie GUO, Ji LI, Cai-rong GAO, Geng-qian ZHANG, Xin-hua LIANG, Qiang-qiang ZHANG, Hong-wei WANG, Si-jin LI, Ying-yuan WANG, Ke-ming YUN. Exploration and Practice of the “One Combination, Two Highlights, Three Combinations, Four in One” Innovative Talents Training Mode in Forensic Medicine [J]. Journal of Forensic Medicine, 2023, 39(2): 193-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||