Journal of Forensic Medicine ›› 2024, Vol. 40 ›› Issue (5): 419-429.DOI: 10.12116/j.issn.1004-5619.2024.440801
• Original Articles • Next Articles
Hao-jie QIN1(), Yuan-yuan LIU1,2, En-hao FU1,2, Ya-wen LIU2,3, Zhi-ling TIAN2, He-wen DONG2, Tai-ang LIU4, Dong-hua ZOU2, Yi-bin CHENG2(
), Ning-guo LIU2(
)
Received:
2024-08-01
Online:
2025-02-11
Published:
2024-10-25
Contact:
Yi-bin CHENG, Ning-guo LIU
CLC Number:
Hao-jie QIN, Yuan-yuan LIU, En-hao FU, Ya-wen LIU, Zhi-ling TIAN, He-wen DONG, Tai-ang LIU, Dong-hua ZOU, Yi-bin CHENG, Ning-guo LIU. Intelligent Recognition and Segmentation of Blunt Craniocerebral Injury CT Images Based on DeepLabV3+ Model[J]. Journal of Forensic Medicine, 2024, 40(5): 419-429.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2024.440801
损伤类型 | Dice值 |
---|---|
头皮血肿 | 0.766 4 |
颅骨骨折 | 0.812 3 |
硬脑膜外血肿 | 0.938 7 |
硬脑膜下血肿 | 0.782 7 |
脑挫伤 | 0.858 1 |
模型背景 | 0.995 7 |
Tab. 1 The Dice values of DeepLabV3+ model for segmentation of 5 types of craniocerebral injuries
损伤类型 | Dice值 |
---|---|
头皮血肿 | 0.766 4 |
颅骨骨折 | 0.812 3 |
硬脑膜外血肿 | 0.938 7 |
硬脑膜下血肿 | 0.782 7 |
脑挫伤 | 0.858 1 |
模型背景 | 0.995 7 |
损伤类型 | 损伤颅脑 | 正常颅脑 | ||||
---|---|---|---|---|---|---|
处 | 真阳 | 假阴 | 数量 | 真阴 | 假阳 | |
头皮血肿 | 109 | 100(91.74) | 9(8.26) | 24 | 18(75.00) | 6(25.00) |
颅骨骨折 | 77 | 66(85.71) | 11(14.29) | 21 | 17(80.95) | 4(19.05) |
硬脑膜外血肿 | 39 | 36(92.31) | 3(7.69) | 24 | 17(70.83) | 7(29.17) |
硬脑膜下血肿 | 49 | 46(93.88) | 3(6.12) | 21 | 17(80.95) | 4(19.05) |
脑挫伤 | 31 | 29(93.55) | 2(6.45) | 23 | 16(69.57) | 7(30.43) |
Tab. 2 The injury segmentation data of living craniocerebral CT images [n(%)]
损伤类型 | 损伤颅脑 | 正常颅脑 | ||||
---|---|---|---|---|---|---|
处 | 真阳 | 假阴 | 数量 | 真阴 | 假阳 | |
头皮血肿 | 109 | 100(91.74) | 9(8.26) | 24 | 18(75.00) | 6(25.00) |
颅骨骨折 | 77 | 66(85.71) | 11(14.29) | 21 | 17(80.95) | 4(19.05) |
硬脑膜外血肿 | 39 | 36(92.31) | 3(7.69) | 24 | 17(70.83) | 7(29.17) |
硬脑膜下血肿 | 49 | 46(93.88) | 3(6.12) | 21 | 17(80.95) | 4(19.05) |
脑挫伤 | 31 | 29(93.55) | 2(6.45) | 23 | 16(69.57) | 7(30.43) |
损伤类型 | 准确率 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
头皮血肿 | 88.72 | 94.34 | 91.74 | 93.02 |
颅骨骨折 | 84.69 | 94.29 | 85.71 | 89.80 |
硬脑膜外血肿 | 84.13 | 83.72 | 92.31 | 87.80 |
硬脑膜下血肿 | 90.00 | 92.00 | 93.88 | 92.93 |
脑挫伤 | 83.33 | 80.56 | 93.55 | 86.57 |
Tab. 3 Evaluation indicators for predicting 5 types of living craniocerebral injuries by the model
损伤类型 | 准确率 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
头皮血肿 | 88.72 | 94.34 | 91.74 | 93.02 |
颅骨骨折 | 84.69 | 94.29 | 85.71 | 89.80 |
硬脑膜外血肿 | 84.13 | 83.72 | 92.31 | 87.80 |
硬脑膜下血肿 | 90.00 | 92.00 | 93.88 | 92.93 |
脑挫伤 | 83.33 | 80.56 | 93.55 | 86.57 |
损伤类型 | 损伤颅脑 | 正常颅脑 | ||||
---|---|---|---|---|---|---|
处 | 真阳 | 假阴 | 数量 | 真阴 | 假阳 | |
头皮血肿 | 139 | 120(86.33) | 19(13.67) | 39 | 12(30.77) | 27(69.23) |
颅骨骨折 | 35 | 22(62.86) | 13(37.14) | 48 | 7(14.58) | 41(85.42) |
硬脑膜外血肿 | 13 | 13(100.00) | 0(0.00) | 36 | 18(50.00) | 8(22.22) |
硬脑膜下血肿 | 36 | 18(50.00) | 18(50.00) | 20 | 18(90.00) | 2(10.00) |
脑挫伤 | 34 | 33(97.06) | 1(2.94) | 85 | 17(20.00) | 68(80.00) |
Tab. 4 The injury segmentation data of cadaveric craniocerebral CT images
损伤类型 | 损伤颅脑 | 正常颅脑 | ||||
---|---|---|---|---|---|---|
处 | 真阳 | 假阴 | 数量 | 真阴 | 假阳 | |
头皮血肿 | 139 | 120(86.33) | 19(13.67) | 39 | 12(30.77) | 27(69.23) |
颅骨骨折 | 35 | 22(62.86) | 13(37.14) | 48 | 7(14.58) | 41(85.42) |
硬脑膜外血肿 | 13 | 13(100.00) | 0(0.00) | 36 | 18(50.00) | 8(22.22) |
硬脑膜下血肿 | 36 | 18(50.00) | 18(50.00) | 20 | 18(90.00) | 2(10.00) |
脑挫伤 | 34 | 33(97.06) | 1(2.94) | 85 | 17(20.00) | 68(80.00) |
损伤类型 | 准确率 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
头皮血肿 | 74.16 | 81.63 | 86.33 | 83.92 |
颅骨骨折 | 34.94 | 34.92 | 62.86 | 44.90 |
硬脑膜外血肿 | 63.27 | 61.90 | 100.00 | 76.47 |
硬脑膜下血肿 | 64.29 | 90.00 | 50.00 | 64.29 |
脑挫伤 | 42.02 | 32.67 | 97.06 | 48.89 |
Tab. 5 Evaluation indicators for predicting 5 types ofcadaveric craniocerebral injuries by the model
损伤类型 | 准确率 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
头皮血肿 | 74.16 | 81.63 | 86.33 | 83.92 |
颅骨骨折 | 34.94 | 34.92 | 62.86 | 44.90 |
硬脑膜外血肿 | 63.27 | 61.90 | 100.00 | 76.47 |
硬脑膜下血肿 | 64.29 | 90.00 | 50.00 | 64.29 |
脑挫伤 | 42.02 | 32.67 | 97.06 | 48.89 |
1 | 安永明,张志威,刘剑霞. 骑跨横窦硬膜外血肿致伤方式审查1例[J].中国法医学杂志,2024,39(1):126-127. doi:10.13618/j.issn.1001-5728.2024.01.025 . |
AN Y M, ZHANG Z W, LIU J X. Review of injury manners of epidural hematoma riding across transverse sinus: A case report[J]. Zhongguo Fayixue Zazhi,2024,39(1):126-127. | |
2 | 宋健文,徐彦昊,吕伟平,等. 他伤并自伤致颅脑损伤法医学鉴定1例[J].刑事技术,2023,48(5):543-546.doi:10.16467/j.1008-3650.2023.5013 . |
SONG J W, XU Y H, LÜ W P, et al. Forensic clinical evaluation of complex craniocerebral injury caused by intentional injuries and self-inflicted injury: A case report[J]. Xingshi Jishu,2023,48(5):543-546. | |
3 | KRANIOTI E F, NATHENA D, SPANAKIS K, et al. Unenhanced PMCT in the diagnosis of fatal traumatic brain injury in a charred body[J]. J Forensic Leg Med,2021,77:102093. doi:10.1016/j.jflm.2020.102093 . |
4 | KLEVNO V A, CHUMAKOVA Y V, KORO-TENKO O A, et al. Virtopsy for studying the sudden death of an adolescent[J]. Russ J Forensic Med,2020,6(1):41-45. doi:10.19048/2411-8729-2020-6-1-41-45 . |
5 | 孙雪阳,杨琦帆,朱运良,等. 基于CT图像推断钝力性颅脑损伤成伤机制的logistic回归分析[J].法医学杂志,2022,38(2):217-222. doi:10.12116/j.issn.1004-5619.2021.410809 . |
SUN X Y, YANG Q F, ZHU Y L, et al. Logistic regression analysis of the mechanism of blunt brain injury inference based on CT images[J]. Fayixue Zazhi,2022,38(2):217-222. | |
6 | 杨琦帆,孙雪阳,王彦斌,等. 基于深度学习的颅脑损伤机制自动化鉴别[J].法医学杂志,2022,38(2):223-230. doi:10.12116/j.issn.1004-5619.2021.410923 . |
YANG Q F, SUN X Y, WANG Y B, et al. Automatic identification of brain injury mechanism based on deep learning[J]. Fayixue Zazhi,2022,38(2):223-230. | |
7 | TAGHANAKI S A, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images: A review[J]. Artif Intell Rev,2021,54(1):137-178. doi:10.1007/s10462-020-09854-1 . |
8 | LI Y, HUANG Z, DONG X, et al. Forensic age estimation for pelvic X-ray images using deep learning[J]. Eur Radiol,2019,29(5):2322-2329. doi:10.1007/s00330-018-5791-6 . |
9 | CAO Y, MA Y, VIEIRA D N, et al. A potential method for sex estimation of human skeletons using deep learning and three-dimensional surface scanning[J]. Int J Legal Med,2021,135(6):2409-2421. doi:10.1007/s00414-021-02675-z . |
10 | 武斌,李洋,夏志远,等. 虚拟解剖用于尸体颅脑损伤致伤物推断1例[J].中国法医学杂志,2022,37(1):21-23. doi:10.13618/j.issn.1001-5728.2022.01.005 . |
WU B, LI Y, XIA Z Y, et al. Estimation of the injury instruments of cadaveric craniocerebral injuries using virtual autopsy: A case report[J]. Zhongguo Fayixue Zazhi,2022,37(1):21-23. | |
11 | EBERT L C, HEIMER J, SCHWEITZER W, et al. Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning — A feasibility study[J]. Forensic Sci Med Pathol,2017,13(4):426-431. doi:10.1007/s12024-017-9906-1 . |
12 | 尹艺晓,马金刚,张文凯,等. 从U-Net到Transformer:混合模型在医学图像分割中的应用进展[J].激光与光电子学进展,2025,62(2):0200001. doi:10.3788/LOP240875 . |
YIN Y X, MA J G, ZHANG W K, et al. From U-Net to Transformer: Progress in the application of hybrid models in medical image segmentation[J]. Jiguang Yu Guangdianzixue Jinzhan,2025,62(2):0200001. | |
13 | HERNANDEZ PETZSCHE M R, DE LA ROSA E, HANNING U, et al. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset[J]. Sci Data,2022,9(1):762. doi:10.1038/s41597-022-01875-5 . |
14 | WANG Y, WANG C, WU H, et al. An improved Deeplabv3+ semantic segmentation algorithm with multiple loss constraints[J]. PLoS One,2022,17(1):e0261582. doi:10.1371/journal.pone.0261582 . |
15 | KHODADADI SHOUSHTARI F, SINA S, DEH-KORDI A N V. Automatic segmentation of glioblastoma multiform brain tumor in MRI images: Using Deeplabv3+ with pre-trained Resnet18 weights[J]. Phys Med,2022,100:51-63. doi:10.1016/j.ejmp.2022.06.007 . |
16 | 董贺文,孙溢,钱辉,等. 死后尸体CT影像学特征变化研究进展[J].法医学杂志,2019,35(6):716-720. doi:10.12116/j.issn.1004-5619.2019.06.013 . |
DONG H W, SUN Y, QIAN H, et al. Research progress on postmortem changes of computed tomography imaging characteristics on corpses[J]. Fayixue Zazhi,2019,35(6):716-720. | |
17 | 刘晓菲,晋文举,夏志远,等. 尸体与活体颅脑CT影像的比较[J].中国法医学杂志,2020,35(4):350-354.doi:10.13618/j.issn.1001-5728.2020.04.002 . |
LIU X F, JIN W J, XIA Z Y, et al. Comparison of craniocerebral computed tomography (CT) of the deceased and the living body[J]. Zhongguo Fayixue Zazhi,2020,35(4):350-354. | |
18 | WANG Y, ZHOU Q, LIU J, et al. LEDNet: A lightweight encoder-decoder network for real-time semantic segmentation[C]// 2019 IEEE International Conference on Image Processing (ICIP). China: Taiwan,2019:1860-1864. |
19 | NACEUR M B, AKIL M, SAOULI R, et al. Deep convolutional neural networks for brain tumor segmentation: Boosting performance using deep transfer learning: Preliminary results[C]// Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Shenzhen,2019:303-315. |
20 | ZHENG H D, SUN Y L, KONG D W, et al. Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI[J]. Nat Commun,2022,13(1):841. doi:10.1038/s41467-022-28387-5 . |
21 | WACHINGER C, REUTER M, KLEIN T. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy[J]. NeuroImage,2018,170:434-445. doi:10.1016/j.neuroimage.2017.02.035 . |
22 | MCCOY D B, DUPONT S M, GROS C, et al. Convolutional neural network-based automated segmentation of the spinal cord and contusion injury: Deep learning biomarker correlates of motor impairment in acute spinal cord injury[J]. AJNR Am J Neuroradiol,2019,40(4):737-744. doi:10.3174/ajnr.A6020 . |
23 | 李雪梅,曹琼,曹慧敏,等. 基于最大熵阈值分割法的颅脑CT图像血肿自动诊断系统研究[J].中国医学装备,2022,19(8):1-5. doi:10.3969/J.ISSN.1672-8270.2022.08.001 . |
LI X M, CAO Q, CAO H M, et al. Study on the automatic diagnostic system for hematoma in CT image of brain based on threshold segmentation method of maximum entropy[J]. Zhongguo Yixue Zhuangbei,2022,19(8):1-5. | |
24 | CHILAMKURTHY S, GHOSH R, TANAMALA S, et al. Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study[J]. Lancet,2018,392(10162):2388-2396. doi:10.1016/S0140-6736(18)31645-3 . |
25 | JANOT K, OLIVEIRA T R, FROMONT-HANKARD G, et al. Quantitative estimation of thrombus-erythro- cytes using MRI. A phantom study with clot analogs and analysis by statistic regression models[J]. J Neurointerv Surg,2020,12(2):181-185. doi:10.1136/neurintsurg-2019-014950 . |
26 | WANG X, HU Z, SHI S, et al. A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet[J]. Sci Rep,2023,13(1):7600. doi:10.1038/s41598-023-34379-2 . |
27 | PEASE M, AREFAN D, BARBER J, et al. Outcome prediction in patients with severe traumatic brain injury using deep learning from head CT scans[J]. Radiology,2022,304(2):385-394. doi:10.1148/radiol.212181 . |
28 | DE FEO R, HÄMÄLÄINEN E, MANNINEN E, et al. Convolutional neural networks enable robust automatic segmentation of the rat hippocampus in MRI after traumatic brain injury[J]. Front Neurol,2022,13:820267. doi:10.3389/fneur.2022.820267 . |
29 | HUANG J S, HUANG S Y, LIAO H Z, et al. Point-of-care ultrasound diagnosis of skull fracture in Chinese children 0-6 years old with scalp hematoma from minor head trauma: A preliminary prospective observational study[J]. Heliyon,2023,9(4):e15255. doi:10.1016/j.heliyon.2023.e15255 . |
30 | 叶俊花,徐萌艳,方柳絮. 新生儿头皮血肿发生影响因素分析[J].中国实用护理杂志,2022,38(12):902-905. doi:10.3760/cma.j.cn211501-20210322-00860 . |
YE J H, XU M Y, FANG L X. Analysis of influen-cing factors for the occurrence of neonatal scalp hematoma[J]. Zhongguo Shiyong Huli Zazhi,2022,38(12):902-905. | |
31 | WU D R, XU Y F, LU B L. Transfer learning for EEG-based brain-computer interfaces: A review of progress made since 2016[J]. IEEE Trans Cogn Dev Syst,2022,14(1):4-19. doi:10.1109/tcds.2020.3007453 . |
32 | 黄腾飞,刘巧梨,易海玲,等. 假性蛛网膜下腔出血征的CT定量分析和鉴别诊断[J].放射学实践,2021,36(12):1488-1492. doi:10.13609/j.cnki.1000-0313.2021.12.006 . |
HUANG T F, LIU Q L, YI H L, et al. CT value quantitative analysis for diagnosis and differen-tiation of pseudo-subarachnoid hemorrhage[J]. Fangshexue Shijian,2021,36(12):1488-1492. | |
33 | KLEVNO V A, CHUMAKOVA Y V, KOROTENKO O A, et al. Virtopsy for studying the sudden death of an adolescent[J]. Russ J Forensic Med,2020,6(1):41-45. doi:10.19048/2411-8729-2020-6-1-41-45 . |
34 | MESSAOUDI H, BELAID A, SALEM D BEN, et al. Cross-dimensional transfer learning in medical image segmentation with deep learning[J]. Med Image Anal,2023,88:102868. doi:10.1016/j.media.2023.102868 . |
35 | MA J, HE Y, LI F, et al. Segment anything in medical images[J]. Nat Commun,2024,15(1):654. doi:10.1038/s41467-024-44824-z . |
36 | CHENG D, LAM E Y. Transfer learning U-Net deep learning for lung ultrasound segmentation[J]. arXiv,2021. doi:10.48550/arXiv.2110.02196 . |
37 | 张珊,马勋泰. 头颅CT诊断不明确的3例蛛网膜下腔出血临床分析[J].第三军医大学学报,2014,36(16):1757,1760. doi:10.16016/j.1000-5404.2014.16.026 . |
ZHANG S, MA X T. Clinical analysis of subarachnoid hemorrhage with unclear diagnosis by craniocerebral CT: Three case reports[J].Di-san Junyi Daxue Xuebao,2014,36(16):1757,1760. | |
38 | 张建鹏,王浩馨,陈爱梅. 138例蛛网膜下腔出血CT分析[J].临床荟萃,2012,27(16):1425-1426. |
ZHANG J P, WANG H X, CHEN A M. CT analysis of 138 cases of subarachnoid haemorrhage[J]. Linchuang Huicui,2012,27(16):1425-1426. |
[1] | Hong-xia HAO, Jie-min CHEN, Xiao-ying YU, Meng WANG, Zhi-lu ZHOU, Yan-liang SHENG, Wen-tao XIA. Estimation of Visual Acuity after Recovery from Different Degrees of Ocular Trauma Using Pattern Visual Evoked Potential [J]. Journal of Forensic Medicine, 2024, 40(5): 447-453. |
[2] | Zhi YAN, Xun-ming JI, Xiao HE, Xiao-jing ZHANG, Lei WAN, Hong ZHANG, Mei TIAN, Bin CONG. Progress and Application Prospects of Forensic Molecular Imaging Technology in Living Individual Examination [J]. Journal of Forensic Medicine, 2024, 40(5): 476-483. |
[3] | Tian-fu HE, Huan-hui ZHU, Yuan-yuan TIAN, Yin-shuang JIN, Xian-wen LIN, Song-cai WANG. Detection of Etomidate and Etomidate Acid in Urine Using HPLC-MS/MS Method [J]. Journal of Forensic Medicine, 2024, 40(5): 454-460. |
[4] | Jing-chen GE, Min SHANG, Ming-yang YAO, Ming-fei WEI, Jun-zhan SHI, Ze-wei YAO, Jia-yin SHI, Fan LI. Application of MSCT Image Post-Processing Techniques in the Identification of Rib Fracture Malunion [J]. Journal of Forensic Medicine, 2024, 40(4): 324-329. |
[5] | Yu-jiao WU, Yue-qin ZHOU, Yi-wen SHEN, Jie-qing JIANG. Analysis of 39 Forensic Clinical Sex Identification Cases after Sex Reassignment Surgery [J]. Journal of Forensic Medicine, 2024, 40(4): 365-371. |
[6] | Zong-yang NIE, Wei HU, Ling-yu LI, Qing-bo ZHANG, Xin HUANG, Bo LI. Structure Confirmation of Three New Psychoactive Substances and Qualitative Identification of Unknown Substances [J]. Journal of Forensic Medicine, 2024, 40(4): 340-351. |
[7] | Chen-jun MA, Yong TAN, Qing-hua ZHANG. The Talent Training Model of Forensic Medicine in Japan and Its Reference [J]. Journal of Forensic Medicine, 2024, 40(3): 284-290. |
[8] | Ze-ren YANG, Dong GAO, Qing XIA, Dan RAN, Yan-liang SHENG, Wen-tao XIA. Effects of Different Test Positions on Quantitative Muscle Strength of Wrist and Finger Flexor Muscle Groups and Its Standardization [J]. Journal of Forensic Medicine, 2024, 40(3): 237-244,253. |
[9] | Jia-xuan HAN, Shi-hui SHEN, Yi-wen WU, Xiao-dan SUN, Tian-nan CHEN, Jiang TAO. Adolescents and Children Age Estimation Using Machine Learning Based on Pulp and Tooth Volumes on CBCT Images [J]. Journal of Forensic Medicine, 2024, 40(2): 143-148. |
[10] | Xuan WEI, Yu-shan CHEN, Jie DING, Chang-xing SONG, Jun-jing WANG, Zhao PENG, Zhen-hua DENG, Xu YI, Fei FAN. Age Estimation by Machine Learning and CT-Multiplanar Reformation of Cranial Sutures in Northern Chinese Han Adults [J]. Journal of Forensic Medicine, 2024, 40(2): 128-134. |
[11] | Huai-han ZHANG, Yong-jie CAO, Ji ZHANG, Jian XIONG, Ji-wei MA, Xiao-tong YANG, Ping HUANG, Yong-gang MA. Adults Ischium Age Estimation Based on Deep Learning and 3D CT Reconstruction [J]. Journal of Forensic Medicine, 2024, 40(2): 154-163. |
[12] | Chen-shan LÜ, Yi-xuan CAO, Xiao-xi MU, Hai-yan CUI, Tao WANG, Zhi-wen WEI, Ke-ming YUN, Meng HU. Rapid Screening of 34 Emerging Contaminants in Surface Water by UHPLC-Q-TOF-MS [J]. Journal of Forensic Medicine, 2024, 40(1): 30-36. |
[13] | He-ying CHENG, Yun-ge ZHANG, Yan CHEN, Sun YIN, Ming LÜ, Chun-xiao LI. Correlation Analysis and Comparison of Adult CE-Chirp ABR Response Threshold and Pure Tone Hearing Threshold [J]. Journal of Forensic Medicine, 2024, 40(1): 15-19. |
[14] | Yong YU, Ying-jie WANG, Yun-fei JIA, Bao-jing HUANG, Song-yue HE, Chuan-chuan LIU. Forensic Identification and Evaluation of 25 Obstetric Brachial Plexus Palsy Medical Damage Cases [J]. Journal of Forensic Medicine, 2024, 40(1): 43-49. |
[15] | Wei-guang YU, Qiang HE, Zheng-di WANG, Cheng-jun TIAN, Jin-kai WANG, Qian ZHENG, Fei REN, Chao ZHANG, You-mei WANG, Peng XU, Zhi-wen WEI, Ke-ming YUN. Toxicokinetics of MDMA and Its Metabolite MDA in Rats [J]. Journal of Forensic Medicine, 2024, 40(1): 37-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||