Journal of Forensic Medicine ›› 2022, Vol. 38 ›› Issue (1): 14-19.DOI: 10.12116/j.issn.1004-5619.2021.410404
Special Issue: 水中尸体研究专题
• Review • Previous Articles Next Articles
Yong-zheng ZHU1,2(), Ji ZHANG1(
), Qi CHENG1,3, Kai-fei DENG1, Kai-jun MA4, Jian-hua ZHANG1, Jian ZHAO5, Jun-hong SUN2, Ping HUANG1(
), Zhi-qiang QIN1(
)
Received:
2021-04-06
Online:
2022-02-25
Published:
2022-02-28
Contact:
Ping HUANG,Zhi-qiang QIN
CLC Number:
Yong-zheng ZHU, Ji ZHANG, Qi CHENG, Kai-fei DENG, Kai-jun MA, Jian-hua ZHANG, Jian ZHAO, Jun-hong SUN, Ping HUANG, Zhi-qiang QIN. Research Progress of Automatic Diatom Test by Artificial Intelligence[J]. Journal of Forensic Medicine, 2022, 38(1): 14-19.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2021.410404
1 | LUNETTA P, PENTTILÄ A, HÄLLFORS G. Scanning and transmission electron microscopical evidence of the capacity of diatoms to penetrate the alveolo-capillary barrier in drowning[J]. Int J Legal Med,1998,111(5):229-237. doi:10.1007/s004140050159 . |
2 | ZHANG P, KANG X, ZHANG S, et al. The length and width of diatoms in drowning cases as the evidence of diatoms penetrating the alveoli-capillary barrier[J]. Int J Legal Med,2020,134(3):1037-1042. doi:10.1007/s00414-019-02164-4 . |
3 | 李棨,马开军,张晓东,等. 水中尸体肺组织硅藻检验与死因分析[J].法医学杂志,2011,27(5):324-326,333. doi:10.3969/j.issn.1004-5619.2011.05.002 . |
LI Q, MA K J, ZHANG X D, et al. Diatom test in lung tissue of corpses in water and causes of death[J]. Fayixue Zazhi,2011,27(5):324-326,333. | |
4 | LUDES B, COSTE M, NORTH N, et al. Diatom analysis in victim’s tissues as an indicator of the site of drowning[J]. Int J Legal Med,1999,112(3):163-166. doi:10.1007/s004140050224 . |
5 | SHEN X, LIU Y, XIAO C, et al. Analysis of false-positive results of diatom test in the diagnosis of drowning-would not be an impediment[J]. Int J Legal Med,2019,133(6):1819-1824. doi:10.1007/s00414-019-02021-4 . |
6 | CARBALLEIRA R, VIEIRA D N, FEBRERO-BANDE M, et al. A valid method to determine the site of drowning[J]. Int J Legal Med,2018,132(2):487-497. doi:10.1007/s00414-017-1708-1 . |
7 | PIETTE M H A, DE LETTER E A. Drowning: Still a difficult autopsy diagnosis[J]. Forensic Sci Int,2006,163(1/2):1-9. doi:10.1016/j.forsciint.2004.10.027 . |
8 | BORTOLOTTI F, TAGLIARO F, MANETTO G. Objective diagnosis of drowning by the “diatom test” - A critical review[J]. Forensic Sci Rev,2004,16(2):135-148. |
9 | SINGH R, SINGH R, THAKAR M K. Extraction method of diatoms - A review[J]. India Int J Forensic Med Toxicol,2006,4(2):1-11. |
10 | 中华人民共和国公安部. 人体组织器官中硅藻硝酸破机法检验: [S].北京:中国标准出版社,2009. |
The Ministry of Public Security of the People’s Republic of China. Detection the diatoms in human tissues and organs by digesting organic matter with nitric acid: [S]. Beijing: China Standards Publishing Press,2009. | |
11 | ZHAO J, LIU C, HU S, et al. Microwave digestion - vacuum filtration - automated scanning electron microscopy as a sensitive method for forensic diatom test[J]. Int J Legal Med,2013,127(2):459-463. doi:10.1007/s00414-012-0756-9 . |
12 | ZHAO J, LIU C, BARDEESI A S A, et al. The diagnostic value of quantitative assessment of diatom test for drowning: An analysis of 128 water-related death cases using microwave digestion-vacuum filtration-automated scanning electron microscopy[J]. J Forensic Sci,2017,62(6):1638-1642. doi:10.1111/1556-4029.13455 . |
13 | HU S L, LIU C, WEN J F, et al. Detection of diatoms in water and tissues by combination of microwave digestion, vacuum filtration and scanning electron microscopy[J]. Forensic Sci Int,2013,226(1/2/3): e48-e51. doi:10.1016/j.forsciint.2013.01.010 . |
14 | FUCCI N, PASCALI V L, PUCCINELLI C, et al. Evaluation of two methods for the use of diatoms in drowning cases[J]. Forensic Sci Med Pathol,2015,11(4):601-605. doi:10.1007/s12024-015-9708-2 . |
15 | SIDARI L, DI NUNNO N, COSTANTINIDES F, et al. Diatom test with Soluene-350 to diagnose drowning in sea water[J]. Forensic Sci Int,1999,103(1):61-65. doi:10.1016/S0379-0738(99)00056-0 . |
16 | TAKEICHI T, KITAMURA O. Detection of diatom in formalin-fixed tissue by proteinase K digestion[J]. Forensic Sci Int,2009,190(1/2/3):19-23. doi:10.1016/j.forsciint.2009.05.005 . |
17 | YU Z, LIU C, WANG H, et al. The effect of enzyme digestion time on the detection of diatom species[J]. Pak J Pharm Sci,2014,27(S3):691-694. |
18 | KAKIZAKI E, SONODA A, SHINKAWA N, et al. A new enzymatic method for extracting diatoms from organs of suspected drowning cases using papain: Optimal digestion and first practical application[J]. Forensic Sci Int,2019,297:204-216. doi:10.1016/j.forsciint.2019.02.008 . |
19 | KLOSTER M, LANGENKÄMPER D, ZUROWIETZ M, et al. Deep learning-based diatom taxonomy on virtual slides[J]. Sci Rep,2020,10:14416. doi:10.1038/s41598-020-71165-w . |
20 | PACHAR J V, CAMERON J M. Scanning electron microscopy: Application in the identification of diatoms in cases of drowning[J]. J Forensic Sci,1992,37(3):860-866. |
21 | DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE,2009:248-255. doi:10.1109/CVPR.2009.5206848 . |
22 | GUO Y M, LIU Y, BAKKER E M, et al. CNN-RNN: A large-scale hierarchical image classification framework[J]. Multimed Tools Appl,2018,77(8):10251-10271. doi:10.1007/s11042-017-5443-x . |
23 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM,2017,60(6):84-90. doi:10.1145/3065386 . |
24 | ARESTA G, ARAÚJO T, KWOK S, et al. BACH: Grand challenge on breast cancer histology images[J]. Med Image Anal,2019,56:122-139. doi:10.1016/j.media.2019.05.010 . |
25 | HA Q S, LIU B, LIU F X. Identifying melanoma images using EfficientNet ensemble: Winning solution to the SIIM-ISIC melanoma classification challenge[J/OL]. (2020-10-11)[2021-04-02]. . |
26 | ZHOU Y Y, ZHANG J, HUANG J, et al. Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm[J]. Forensic Sci Int,2019,302:109922. doi:10.1016/j.forsciint.2019.109922 . |
27 | YU W M, XUE Y, KNOOPS R, et al. Automated diatom searching in the digital scanning electron microscopy images of drowning cases using the deep neural networks[J]. Int J Leg Med,2021,135(2):497-508. doi:10.1007/s00414-020-02392-z . |
28 | ZHOU Y, CAO Y, HUANG J, et al. Research advances in forensic diatom testing[J]. Forensic Sci Res,2020,5(2):98-105. doi:10.1080/20961790. 2020.1718901 . |
29 | HU H, GU J Y, ZHANG Z, et al. Relation networks for object detection[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE,2018:3588-3597. doi:10.1109/CVPR.2018.00378 . |
30 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE,2014:580-587. doi:10.1109/CVPR.2014.81 . |
31 | GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago:IEEE,2015:1440-1448. doi:10.1109/ICCV.2015.169 . |
32 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell,2017,39(6):1137-1149. doi:10.1109/TPAMI.2016.2577031 . |
33 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE,2016:779-788. doi:10.1109/CVPR.2016.91 . |
34 | PEDRAZA A, BUENO G, DENIZ O, et al. Lights and pitfalls of convolutional neural networks for diatom identification[C]//SPIE Photonics Europe. Proc SPIE 10679, Optics, Photonics, and Digital Technologies for Imaging Applications V. Strasbourg: SPIE,2018:88-96. doi:10.1117/12.2309488 . |
35 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. (2015-04-10)[2021-04-02]. arXiv:. |
36 | SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v 4, inception-ResNet and the impact of residual connections on learning[J/OL]. (2016-08-23)[2021-04-02]. . |
37 | 周圆圆,曹永杰,杨越,等. 基于人工智能硅藻自动化识别系统的实际案例应用[J].法医学杂志,2020,36(2):239-242. doi:10.12116/j.issn.1004-5619.2020.02.017 . |
ZHOU Y Y, CAO Y J, YANG Y, et al. Application of artificial intelligence automatic diatom identification system in practical cases[J]. Fayixue Zazhi,2020,36(2):239-242. | |
38 | 邓杰航,何冬冬,卓家鸿,等. 复杂背景干扰下硅藻图像的深度网络识别与定位[J].南方医科大学学报,2020,40(2):183-189. doi:10.12122/j.issn.1673-4254.2020.02.08 . |
DENG J H, HE D D, ZHUO J H, et al. Deep learning network-based recognition and localization of diatom images against complex background[J]. Nanfang Yike Daxue Xuebao,2020,40(2):183-189. | |
39 | BAYER M, PULLAN M, MANN D, et al. ADIAC: Using computer vision technology for automatic diatom identification[C]//AMILLI A E. Proceedings of the 16th International Diatom Symposium. Athens: The 16th International Diatom Symposium,2000:537-532. |
40 | BUENO G, DENIZ O, PEDRAZA A, et al. Automated diatom classification (Part A): Handcrafted feature approaches[J]. Appl Sci,2017,7(8):753. doi:10.3390/app7080753 . |
41 | PEDRAZA A, BUENO G, DENIZ O, et al. Automated diatom classification (Part B): A deep learning approach[J]. Appl Sci,2017,7(5):460. doi:10.3390/app7050460 . |
42 | ZHANG J, ZHOU Y, VIEIRA D N, et al. An efficient method for building a database of diatom populations for drowning site inference using a deep learning algorithm[J]. Int J Legal Med,2021,135(3):817-827. doi:10.1007/s00414-020-02497-5 . |
[1] | Wen LI, Hao-zhe LI, Chen CHEN, Wei-xiong CAI. Research Progress and Application Prospect of Facial Micro-Expression Analysis in Forensic Psychiatry [J]. Journal of Forensic Medicine, 2023, 39(5): 493-500. |
[2] | Zhong-hua WANG, Shu-jin LI. Research Progress on Molecular Biology of Human Height Estimation [J]. Journal of Forensic Medicine, 2023, 39(5): 487-492. |
[3] | Lu CHEN, Zhe ZHOU, Sheng-qi WANG. Process of Forensic Medicine in DNA Identification of Aged Human Remains [J]. Journal of Forensic Medicine, 2023, 39(5): 478-486. |
[4] | Yong ZENG, Dong-hua ZOU, Ying FAN, Qing XU, Lu-yang TAO, Yi-jiu CHEN, Zheng-dong LI. Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics [J]. Journal of Forensic Medicine, 2023, 39(5): 471-477. |
[5] | Yu-xin SUN, Xiao-juan GONG, Xiu-li HAO, Yu-xin TIAN, Yi-ming CHEN, Bao ZHANG, Chun-xia YAN. Screening of Genes Co-Associated with Sudden Infant Death Syndrome and Infectious Sudden Death in Infancy and Bioinformatics Analysis of Their Regulatory Networks [J]. Journal of Forensic Medicine, 2023, 39(5): 433-440. |
[6] | Yu YANG, Fan-zhang LEI, Yu-you DONG, Jian-long MA, Qi-qiang SHI, Xue-song YE. Retrospective Analysis of Death Cases of Oral Diphenidol Hydrochloride Poisoning [J]. Journal of Forensic Medicine, 2023, 39(4): 393-398. |
[7] | Jie BAI, Jing SUN, Xiao-guang CHENG, Fan LIU, Hua LIU, Xu WANG. Construction and Application of Rib Fracture Diagnosis Model Based on YOLOv3 Algorithm [J]. Journal of Forensic Medicine, 2023, 39(4): 343-349. |
[8] | Fei FAN, Juan WU, Zhen-hua DENG. Application Progress of Objective Audiological Detection Techniques in Forensic Clinical Medicine [J]. Journal of Forensic Medicine, 2023, 39(4): 360-366. |
[9] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[10] | Qin SU, Qian-ling CHEN, Wei-bin WU, Qing-qing XIANG, Cheng-liang YANG, Dong-fang QIAO, Zhi-gang LI. Metabonomics Analysis of Brain Stem Tissue in Rats with Primary Brain Stem Injury Caused Death [J]. Journal of Forensic Medicine, 2023, 39(4): 373-381. |
[11] | Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs [J]. Journal of Forensic Medicine, 2023, 39(4): 406-416. |
[12] | Ran LI, Hong-yu SUN. Methods and Research Hotspots of Forensic Kinship Testing [J]. Journal of Forensic Medicine, 2023, 39(3): 231-239. |
[13] | Xiao-yan MA, Hong-yu SUN, Qing LI. Research Progresses of Tri-Allelic Patterns in Autosomal STR in Forensic DNA Analysis [J]. Journal of Forensic Medicine, 2023, 39(3): 240-246. |
[14] | Xu-dong ZHANG, Yao-ru JIANG, Xin-rui LIANG, Tian TIAN, Qian-qian JIN, Xiao-hong ZHANG, Jie CAO, Qiu-xiang DU, Jun-hong SUN. Postmortem Interval Estimation Using Protein Chip Technology Combined with Multivariate Analysis Methods [J]. Journal of Forensic Medicine, 2023, 39(2): 115-120. |
[15] | Hang CHEN, Jing HU, Zheng QIAO, Hong-xiao DENG, Min LÜ, Wei LIU. Research Progress on Biological Matrix Reference Materials in Forensic Toxicology [J]. Journal of Forensic Medicine, 2023, 39(2): 176-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||