法医学杂志 ›› 2025, Vol. 41 ›› Issue (2): 136-143.DOI: 10.12116/j.issn.1004-5619.2024.440406
收稿日期:2024-04-14
发布日期:2025-08-11
出版日期:2025-04-25
通讯作者:
张奎
作者简介:李卓(1999—),男,硕士研究生,主要从事法医毒理学研究;E-mail:leezhuo2017@163.com
Zhuo LI(
), Yi-ru ZENG, Zhi-long SHU, Xue-hong SUN, Kui ZHANG(
)
Received:2024-04-14
Online:2025-08-11
Published:2025-04-25
Contact:
Kui ZHANG
摘要:
秀丽隐杆线虫作为一种新兴的模式生物,因生命周期短、遗传背景清晰、进化高度保守、基因组解析完全、实验数据与人体结果高度拟合的特点,近年来已被广泛应用于基础医学、生命科学、环境科学等多个学科领域。在毒理学领域,秀丽隐杆线虫模型也展现出其独特优势。本文从秀丽隐杆线虫的生物学特性出发,总结其毒理学研究优势,介绍基于秀丽隐杆线虫模型的毒理学研究方法及研究进展,重点介绍其在环境法医学和法医毒理学方面的应用,并对其在法医学领域的应用前景进行了展望。
中图分类号:
李卓, 曾绎如, 疏志龙, 孙雪虹, 张奎. 秀丽隐杆线虫模型毒理学研究现状及其法医学应用前景[J]. 法医学杂志, 2025, 41(2): 136-143.
Zhuo LI, Yi-ru ZENG, Zhi-long SHU, Xue-hong SUN, Kui ZHANG. Research Status of Caenorhabditis elegans Model in Toxicology and Its Applications in Forensic Science[J]. Journal of Forensic Medicine, 2025, 41(2): 136-143.
图1 基于秀丽线虫模型的不同毒物暴露方式(基于BioRender平台制作)
Fig. 1 Different toxicant exposure patterns based on the Caenorhabditis elegans model (Generated with BioRender)
| 评价指标 | 研究意义 | 主要内容 | 文献 |
|---|---|---|---|
| 存活率 | 确定半数致死浓度(LC50)以初步判断毒性效应 | 毒物暴露后受试种群存活个体比例 | [ |
| 生殖能力 | 评估毒物对于生殖系统的毒性效应 | 产卵数目、生殖器官形态、虫袋现象 | [ |
| 生长发育情况 | 评估毒物对于能量代谢以及细胞分裂、分化等发育相关的毒性效应 | 身体长度、结构发育异常、各发育阶段所需时长 | [ |
| 行为学表型 | 评估线虫运动、感知等初级功能以及学习记忆、信息整合等高级功能 | 化学趋化性实验、学习记忆实验、嗅觉屏蔽实验 | [ |
表1 秀丽线虫模型的常见毒性评价指标
Tab. 1 Toxicity evaluation indicators for the Caenorhabditis elegans model
| 评价指标 | 研究意义 | 主要内容 | 文献 |
|---|---|---|---|
| 存活率 | 确定半数致死浓度(LC50)以初步判断毒性效应 | 毒物暴露后受试种群存活个体比例 | [ |
| 生殖能力 | 评估毒物对于生殖系统的毒性效应 | 产卵数目、生殖器官形态、虫袋现象 | [ |
| 生长发育情况 | 评估毒物对于能量代谢以及细胞分裂、分化等发育相关的毒性效应 | 身体长度、结构发育异常、各发育阶段所需时长 | [ |
| 行为学表型 | 评估线虫运动、感知等初级功能以及学习记忆、信息整合等高级功能 | 化学趋化性实验、学习记忆实验、嗅觉屏蔽实验 | [ |
| 技术类型 | 技术简述 | 文献 |
|---|---|---|
| 高通量相关技术 | ||
| 荧光筛选技术 | 基于荧光蛋白转基因线虫株或特殊荧光染色对线虫进行高通量荧光成像 | [ |
| 代谢组学技术 | 通过整合非靶标与靶标代谢技术,对毒物作用下线虫整体代谢水平进行高通量、高灵敏度的检测 | [ |
| 微流控芯片技术 | 基于集成化的微流控芯片对线虫进行自动化的大规模分型及筛选 | [ |
| 转录组学技术 | 对特定毒物作用下线虫的RNA进行大规模、高通量分析以获得基因转录情况,研究基因差异表达的调控规律 | [ |
| 基因编辑相关技术 | ||
| TALEN技术 | TALEN是类似于转录激活因子的效应物核酸酶,转录激活因子样效应子重复序列可以通过模块的形式组装,改变重复可变的双氨基酸残基(repeat variable di-residue,RVD)以产生能够进行精确靶向DNA操作的嵌合蛋白,实现精确高效的基因编辑 | [ |
| 转座子Mos1剪切技术 | 可以将外源基因以单拷贝的方式插入基因组,而不被秀丽线虫自身的RNAi系统沉默,允许在特定的位置插入转基因作为单一拷贝且在广泛的组织中进行明显的内源性水平的基因表达 | [ |
| CRISPR/Cas9系统 | 通过人工设计的sgRNA来识别目的序列并引导Cas9蛋白酶进行切割,基于DNA损伤后修复造成基因敲除或敲入等,实现对基因组DNA进行修饰的目的 | [ |
表2 秀丽线虫模型毒理学研究涉及的主要前沿技术
Tab. 2 Cutting-edge techniques for toxicological research based on the Caenorhabditis elegans Model
| 技术类型 | 技术简述 | 文献 |
|---|---|---|
| 高通量相关技术 | ||
| 荧光筛选技术 | 基于荧光蛋白转基因线虫株或特殊荧光染色对线虫进行高通量荧光成像 | [ |
| 代谢组学技术 | 通过整合非靶标与靶标代谢技术,对毒物作用下线虫整体代谢水平进行高通量、高灵敏度的检测 | [ |
| 微流控芯片技术 | 基于集成化的微流控芯片对线虫进行自动化的大规模分型及筛选 | [ |
| 转录组学技术 | 对特定毒物作用下线虫的RNA进行大规模、高通量分析以获得基因转录情况,研究基因差异表达的调控规律 | [ |
| 基因编辑相关技术 | ||
| TALEN技术 | TALEN是类似于转录激活因子的效应物核酸酶,转录激活因子样效应子重复序列可以通过模块的形式组装,改变重复可变的双氨基酸残基(repeat variable di-residue,RVD)以产生能够进行精确靶向DNA操作的嵌合蛋白,实现精确高效的基因编辑 | [ |
| 转座子Mos1剪切技术 | 可以将外源基因以单拷贝的方式插入基因组,而不被秀丽线虫自身的RNAi系统沉默,允许在特定的位置插入转基因作为单一拷贝且在广泛的组织中进行明显的内源性水平的基因表达 | [ |
| CRISPR/Cas9系统 | 通过人工设计的sgRNA来识别目的序列并引导Cas9蛋白酶进行切割,基于DNA损伤后修复造成基因敲除或敲入等,实现对基因组DNA进行修饰的目的 | [ |
| 毒物 | 暴露浓度 | 暴露时间 | 评价指标 | 毒性效应 | 文献 |
|---|---|---|---|---|---|
| 农药 | |||||
| 三氟吡啶胺 | 0.2、1.0、5.0 mg/L | 24 h | 体长、咽泵运动频率、头摆频率 | 氧化应激水平上升、线粒体损伤 | [ |
| 氯吡硫磷 | 0.01%、0.005%、0.002 5% | 48 h | 体长、产卵数量、运动能力 | 胆碱能神经元发育异常 | [ |
| 百草枯二氯化物 | 0.035、1.0 mmol/L | 72、6 h | 产卵数量、寿命、活性氧含量 | 氧化应激水平上升、线粒体损伤 | [ |
| 鱼藤酮 | 0.25、0.5、1.0、5.0 μmol/L | 48 h | 体长、耗氧量 | 能量代谢受限、抑制 | [ |
| 纳米级化工材料 | |||||
| 纳米聚苯乙烯 | 10-6、1.5×10-5、0.1、0.5、1.0、2.0 mg/mL | 108、72 h | 体长、寿命、运动能力、产卵数量、活性氧含量 | 氧化应激水平上升、肠壁通透性异常改变 | [ |
| 纳米级氧化锌颗粒 | 1 mg/mL | 60 h | 产卵数量、细胞凋亡水平 | 基因组DNA断裂增加、染色体畸变 | [ |
| 钴纳米颗粒 | 100、500、1 000 μg/mL | 2 h | 存活率、寿命、运动能力、活性氧含量 | 氧化应激水平上升、线粒体损伤 | [ |
| 二氧化硅纳米颗粒 | 0.25、0.5、1.0 mg/mL | 24 h | 产卵数量、运动能力、寿命、活性氧含量 | 生殖细胞凋亡、氧化应激水平上升 | [ |
| 有机污染物 | |||||
| 3,4-苯并芘 | 1、5、10、20、40 μmol/L | 24、8 d | 寿命、产卵数量 | 基因组DNA断裂增加、脂质代谢异常 | [ |
| 双酚A | 2、10、50、200 μmol/L | 72、48 h | 运动能力、体长、活性氧含量 | 神经递质合成与传递受限、氧化应激水平上升、能量代谢受限 | [ |
| 重金属 | |||||
| 氯化锰 | 10、50、100、250 mmol/L | 1、4 h | 存活率 | 基因组DNA损伤 | [ |
| 甲基汞 | 0.01、0.05 μmol/L | 24 h | 产卵数量、运动能力 | 多巴胺能神经元过度激活、内源性多巴胺增加 | [ |
| 氯化镉 | 10、30、60、100、250 μmol/L | 24、48、72 h | 产卵数量、运动能力、化学趋化性 | 雌雄同体特异性神经元损伤、生殖细胞凋亡 | [ |
表3 基于秀丽线虫模型的环境毒理学研究成果
Tab. 3 Research advances in environmental toxicology based on the Caenorhabditis elegans model
| 毒物 | 暴露浓度 | 暴露时间 | 评价指标 | 毒性效应 | 文献 |
|---|---|---|---|---|---|
| 农药 | |||||
| 三氟吡啶胺 | 0.2、1.0、5.0 mg/L | 24 h | 体长、咽泵运动频率、头摆频率 | 氧化应激水平上升、线粒体损伤 | [ |
| 氯吡硫磷 | 0.01%、0.005%、0.002 5% | 48 h | 体长、产卵数量、运动能力 | 胆碱能神经元发育异常 | [ |
| 百草枯二氯化物 | 0.035、1.0 mmol/L | 72、6 h | 产卵数量、寿命、活性氧含量 | 氧化应激水平上升、线粒体损伤 | [ |
| 鱼藤酮 | 0.25、0.5、1.0、5.0 μmol/L | 48 h | 体长、耗氧量 | 能量代谢受限、抑制 | [ |
| 纳米级化工材料 | |||||
| 纳米聚苯乙烯 | 10-6、1.5×10-5、0.1、0.5、1.0、2.0 mg/mL | 108、72 h | 体长、寿命、运动能力、产卵数量、活性氧含量 | 氧化应激水平上升、肠壁通透性异常改变 | [ |
| 纳米级氧化锌颗粒 | 1 mg/mL | 60 h | 产卵数量、细胞凋亡水平 | 基因组DNA断裂增加、染色体畸变 | [ |
| 钴纳米颗粒 | 100、500、1 000 μg/mL | 2 h | 存活率、寿命、运动能力、活性氧含量 | 氧化应激水平上升、线粒体损伤 | [ |
| 二氧化硅纳米颗粒 | 0.25、0.5、1.0 mg/mL | 24 h | 产卵数量、运动能力、寿命、活性氧含量 | 生殖细胞凋亡、氧化应激水平上升 | [ |
| 有机污染物 | |||||
| 3,4-苯并芘 | 1、5、10、20、40 μmol/L | 24、8 d | 寿命、产卵数量 | 基因组DNA断裂增加、脂质代谢异常 | [ |
| 双酚A | 2、10、50、200 μmol/L | 72、48 h | 运动能力、体长、活性氧含量 | 神经递质合成与传递受限、氧化应激水平上升、能量代谢受限 | [ |
| 重金属 | |||||
| 氯化锰 | 10、50、100、250 mmol/L | 1、4 h | 存活率 | 基因组DNA损伤 | [ |
| 甲基汞 | 0.01、0.05 μmol/L | 24 h | 产卵数量、运动能力 | 多巴胺能神经元过度激活、内源性多巴胺增加 | [ |
| 氯化镉 | 10、30、60、100、250 μmol/L | 24、48、72 h | 产卵数量、运动能力、化学趋化性 | 雌雄同体特异性神经元损伤、生殖细胞凋亡 | [ |
| [1] | KHABIB M N H, SIVASANKU Y, LEE H B, et al. Alternative animal models in predictive toxico-logy[J]. Toxicology,2022,465:153053. doi:10.1016/j.tox.2021.153053 . |
| [2] | KREWSKI D, ANDERSEN M E, TYSHENKO M G, et al. Toxicity testing in the 21st century: Progress in the past decade and future perspectives[J]. Arch Toxicol,2020,94(1):1-58. doi:10.1007/s00204-019-02613-4 . |
| [3] | BRENNER S. The genetics of Caenorhabditis ele-gans [J]. Genetics,1974,77(1):71-94. doi:10.1093/genetics/77.1.71 . |
| [4] | ZHAO Y, CHEN J, WANG R, et al. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans [J]. J Appl Toxicol,2023,43(1):122-145. doi:10.1002/jat.4360 . |
| [5] | COOK S J, JARRELL T A, BRITTIN C A, et al. Whole-animal connectomes of both Caenorhabditis elegans sexes[J]. Nature,2019,571(7763):63-71. doi:10.1038/s41586-019-1352-7 . |
| [6] | WHITE J G, SOUTHGATE E, THOMSON J N, et al. The structure of the nervous system of the nematode Caenorhabditis elegans [J]. Phil Trans R Soc Lond B,1986,314(1165):1-340. doi:10.1098/rstb.1986.0056 . |
| [7] | SETTY H, SALZBERG Y, KARIMI S, et al. Sexually dimorphic architecture and function of a mechanosensory circuit in C. elegans [J]. Nat Commun,2022,13(1):6825. doi:10.1038/s41467-022-34661-3 . |
| [8] | MOROZ L L, ROMANOVA D Y. Chemical cognition: Chemoconnectomics and convergent evolution of integrative systems in animals[J]. Anim Cogn,2023,26(6):1851-1864. doi:10.1007/s10071-023-01833-7 . |
| [9] | DAG U, NWABUDIKE I, KANG D, et al. Dissecting the functional organization of the C. elegans serotonergic system at whole-brain scale[J]. Cell,2023,186(12):2574-2592.e20. doi:10.1016/j.cell.2023.04.023 . |
| [10] | DOLESE D A, JUNOT M P, GHOSH B, et al. Degradative tubular lysosomes link pexophagy to starvation and early aging in C. elegans [J]. Autophagy,2022,18(7):1522-1533. doi:10.1080/1554 8627.2021.1990647 . |
| [11] | WU J, GAO Y, XI J, et al. A high-throughput microplate toxicity screening platform based on Caenorhabditis elegans [J]. Ecotoxicol Environ Saf,2022,245:114089. doi:10.1016/j.ecoenv.2022.114089 . |
| [12] | WU C W, WIMBERLY K, PIETRAS A, et al. RNA processing errors triggered by cadmium and integrator complex disruption are signals for environmental stress[J]. BMC Biol,2019,17(1):56. doi:10.1186/s12915-019-0675-z . |
| [13] | ZHENG S Q, DING A J, LI G P, et al. Drug absorption efficiency in Caenorhbditis elegans delivered by different methods[J]. PLoS One,2013,8(2):e56877. doi:10.1371/journal.pone.0056877 . |
| [14] | WANG Y, ZHANG H, WU X, et al. Ecotoxicity assessment of sodium dimethyldithiocarbamate and its micro-sized metal chelates in Caenorhabditis ele-gans [J]. Sci Total Environ,2020,720:137666. doi:10.1016/j.scitotenv.2020.137666 . |
| [15] | WANG S, CHU Z, ZHANG K, et al. Cadmium-induced serotonergic neuron and reproduction damages conferred lethality in the nematode Caenorhabditis elegans [J]. Chemosphere,2018,213:11-18. doi:10 . |
| 1016/j.chemosphere.2018.09.016. | |
| [16] | NGO L T, HUANG W T, CHAN M H, et al. Comprehensive neurotoxicity of lead halide perovskite nanocrystals in nematode Caenorhabditis elegans [J]. Small,2024,20(2):2306020. doi:10.1002/smll.2023 06020 . |
| [17] | CURRIE S D, DOHERTY J P, XUE K S, et al. The stage-specific toxicity of per- and polyfluoroalkyl substances (PFAS) in nematode Caenorhabditis elegans [J]. Environ Pollut,2023,336:122429. doi:10.1016/j.envpol.2023.122429 . |
| [18] | ABBASS M, CHEN Y, ARLT V M, et al. Benzo[a]pyrene and Caenorhabditis elegans: Defining the genotoxic potential in an organism lacking the classical CYP1A1 pathway[J]. Arch Toxicol,2021,95(3):1055-1069. doi:10.1007/s00204-020-02968-z . |
| [19] | BARGMANN C I, HARTWIEG E, HORVITZ H R. Odorant-selective genes and neurons mediate olfaction in C. elegans [J]. Cell,1993,74(3):515-527. doi:10.1016/0092-8674(93)80053-H . |
| [20] | HIROKI S, YOSHITANE H, MITSUI H, et al. Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans [J]. Nat Commun,2022,13(1):2928. doi:10.1038/s41467-022-30279-7 . |
| [21] | YANG W, WU T, TU S, et al. Redundant neural circuits regulate olfactory integration[J]. PLoS Genet,2022,18(1):e1010029. doi:10.1371/journal.pgen.1010029 . |
| [22] | SUN Q, LIU C, JIANG K, et al. A preliminary study on the neurotoxic mechanism of harmine in Caenorhabditis elegans [J]. Comp Biochem Physiol Part C Toxicol Pharmacol,2021,245:109038. doi:10.1016/j.cbpc.2021.109038 . |
| [23] | JEONG A, PARK S J, LEE E J, et al. Nanoplastics exacerbate Parkinson’s disease symptoms in C. elegans and human cells[J]. J Hazard Mater,2024,465:133289. doi:10.1016/j.jhazmat.2023.133289 . |
| [24] | QU Z, LIU L, WU X, et al. Cadmium-induced reproductive toxicity combined with a correlation to the oogenesis process and competing endogenous RNA networks based on a Caenorhabditis elegans model[J]. Ecotoxicol Environ Saf,2023,268:115687. doi:10.1016/j.ecoenv.2023.115687 . |
| [25] | 赵金玲,安磊,任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J].生物技术通报,2023,39(6):158-170. doi:10.13560/j.cnki.biotech.bull.1985.2022-1190 . |
| ZHAO J L, AN L, REN X L. Development of single cell transcriptome sequencing technology and its application in Caenorhabditis elegans [J]. Shengwu Jishu Tongbao,2023,39(6):158-170. | |
| [26] | KIM H M, LONG N P, MIN J E, et al. Comprehensive phenotyping and multi-omic profiling in the toxicity assessment of nanopolystyrene with different surface properties[J]. J Hazard Mater,2020,399:123005. doi:10.1016/j.jhazmat.2020.123005 . |
| [27] | YOUSSEF K, ARCHONTA D, KUBISESKI T J, et al. Microfluidic electric parallel egg-laying assay and application to in-vivo toxicity screening of microplastics using C. elegans [J]. Sci Total Environ,2021,783:147055. doi:10.1016/j.scitotenv.2021.147055 . |
| [28] | YOON S, YOU D K, JEONG U, et al. Micro-fluidics in high-throughput drug screening: Organ-on-a-chip and C. elegans-based innovations[J]. Biosensors,2024,14(1):55. doi:10.3390/bios14010055 . |
| [29] | WOOD A J, LO T W, ZEITLER B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science,2011,333(6040):307. doi:10.1126/science.1207773 . |
| [30] | REVATHI K, SUBRAMANIAM K. An efficient negative selection marker for Mos1-mediated single-copy integration in Caenorhabditis elegans [J]. MicroPubl Biol,2022. doi:10.17912/micropub.biology.000647 . |
| [31] | LI J, QIN Y, SHEN C, et al. A new miniMOS tool kit capable of visualizing single copy insertion in C. elegans [J]. PeerJ,2023,11:e15433. doi:10.7717/peerj.15433 . |
| [32] | DU X, MCMANUS D P, FRENCH J D, et al. CRISPR/Cas9: A new tool for the study and control of helminth parasites[J]. Bioessays,2021,43(1):e2000185. doi:10.1002/bies.202000185 . |
| [33] | XU S. The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans [J]. J Genet Genom,2015,42(8):413-421. doi:10.1016/j.jgg.2015.06.005 . |
| [34] | PETER E, CANDIDO M, JONES D. Transgenic Caenorhabditis elegans strains as biosensors[J]. Trends Biotechnol,1996,14(4):125-129. doi:10. 1016/0167-7799(96)10016-0 . |
| [35] | PAAVANEN-HUHTALA S, KALICHAMY K, PESSI A M, et al. Biomonitoring of indoor air fungal or chemical toxins with Caenorhabditis elegans nematodes[J]. Pathogens,2023,12(2):161. doi:10. 3390/pathogens12020161 . |
| [36] | WANG Z. Caenorhabditis elegans as an in vivo model organism to elucidate teratogenic effects[J]. Methods Mol Biol,2024,2753:283-306. doi:10. 1007/978-1-0716-3625-1_14 . |
| [37] | 丛斌. 法医学科学技术体系基本架构[J].中国法医学杂志,2024,39(1):5-7. doi:10.13618/j.issn.1001-5728.2024.01.001 . |
| CONG B. Basic framework of science and technology system in the field of forensic medicine[J]. Zhongguo Fayixue Zazhi,2024,39(1):5-7. | |
| [38] | 侯安山. 环境法医学研究和应用[J].中国法医学杂志,2015,30(6):663-666. doi:10.13618/j.issn.1001-5728.2015.06.048 . |
| HOU A S. Research and application of environmental forensic medicine[J]. Zhongguo Fayixue Zazhi,2015,30(6):663-666. | |
| [39] | LIU H, FU G, LI W, et al. Oxidative stress and mitochondrial damage induced by a novel pesticide fluopimomide in Caenorhabditis elegans [J]. Environ Sci Pollut Res Int,2023,30(40):91794-91802. doi:10.1007/s11356-023-28893-z . |
| [40] | JACQUES M T, SOARES M V, FARINA M, et al. Impaired physiological responses and neurotoxicity induced by a chlorpyrifos-based formulation in Caenorhabditis elegans are not solely dependent on the active ingredient[J]. Environ Toxicol Pharmacol,2023,101:104196. doi:10.1016/j.etap.2023.104196 . |
| [41] | BORA S, VARDHAN G S H, DEKA N, et al. Paraquat exposure over generation affects lifespan and reproduction through mitochondrial disruption in C. elegans [J]. Toxicology,2021,447:152632. doi:10.1016/j.tox.2020.152632 . |
| [42] | GONZALEZ-HUNT C P, LUZ A L, RYDE I T, et al. Multiple metabolic changes mediate the res-ponse of Caenorhabditis elegans to the complex I inhibitor rotenone[J]. Toxicology,2021,447:152630. doi:10.1016/j.tox.2020.152630 . |
| [43] | QU M, CHEN H, LAI H, et al. Exposure to nanopolystyrene and its 4 chemically modified derivatives at predicted environmental concentrations causes differently regulatory mechanisms in nematode Caenorhabditis elegans [J]. Chemosphere,2022,305:135498. doi:10.1016/j.chemosphere.2022.135498 . |
| [44] | JIANG W, YAN W, TAN Q, et al. The toxic differentiation of micro- and nanoplastics verified by gene-edited fluorescent Caenorhabditis elegans [J]. Sci Total Environ,2023,856:159058. doi:10.1016/j.scitotenv.2022.159058 . |
| [45] | WANG M, FENG Y, CAO Z, et al. Multiple generation exposure to ZnO nanoparticles induces loss of genomic integrity in Caenorhabditis elegans [J]. Ecotoxicol Environ Saf,2023,249:114383. doi:10. 1016/j.ecoenv.2022.114383 . |
| [46] | CHEN J, CHEN C, WANG N, et al. Cobalt nanoparticles induce mitochondrial damage and β-amyloid toxicity via the generation of reactive oxygen species[J]. Neurotoxicology,2023,95:155-163. doi:10 . |
| 1016/j.neuro.2023.01.010. | |
| [47] | ZHANG F, YOU X, ZHU T, et al. Silica nanoparticles enhance germ cell apoptosis by inducing reactive oxygen species (ROS) formation in Caenorhabditis elegans [J]. J Toxicol Sci,2020,45(3):117-129. doi:10.2131/jts.45.117 . |
| [48] | WANG Y, GAI T, ZHANG L, et al. Neurotoxicity of bisphenol A exposure on Caenorhabditis elegans induced by disturbance of neurotransmitter and oxidative damage[J]. Ecotoxicol Environ Saf,2023,252:114617. doi:10.1016/j.ecoenv.2023.114617 . |
| [49] | NICOLAI M M, WEISHAUPT A K, BAESLER J, et al. Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans [J]. Int J Mol Sci,2021,22(20):10905. doi:10.3390/ijms222010905 . |
| [50] | KE T, SANTAMARIA A, JUNIOR F B, et al. Methylmercury exposure-induced reproductive effects are mediated by dopamine in Caenorhabditis elegans [J]. Neurotoxicol Teratol,2022,93:107120. doi:10.1016/j.ntt.2022.107120 . |
| [51] | ZHANG J, YANG W, LI Z, et al. Multigenerational exposure of cadmium trans-generationally impairs locomotive and chemotactic behaviors in Caenorhabditis elegans [J]. Chemosphere,2023,325:138432. doi:10.1016/j.chemosphere.2023.138432 . |
| [52] | WANG Z, DAI S, WANG J, et al. Assessment on chronic and transgenerational toxicity of methamphetamine to Caenorhabditis elegans and associated aquatic risk through toxicity indicator sensitivity distribution (TISD) analysis[J]. Environ Pollut,2021,288:117696. doi:10.1016/j.envpol.2021.117696 . |
| [53] | LU Q, BU Y, MA L, et al. Transgenerational reproductive and developmental toxicity of tebuconazole in Caenorhabditis elegans [J]. J Appl Toxicol,2020,40(5):578-591. doi:10.1002/jat.3927 . |
| [54] | ZENG X S, GENG W S, JIA J J. Neurotoxin-induced animal models of parkinson disease: Pathogenic mechanism and assessment[J]. ASN Neuro,2018,10:1759091418777438. doi:10.1177/17590914 18777438 . |
| [55] | SILVA L P D DA, CRUZ GUEDES E DA, FERNANDES I C O, et al. Exploring Caenorhabditis elegans as Parkinson’s disease model: Neurotoxins and genetic implications[J]. Neurotox Res,2024,42(1):11. doi:10.1007/s12640-024-00686-3 . |
| [56] | ENGLEMAN E A, KATNER S N, NEAL-BELIVEAU B S. Caenorhabditis elegans as a model to study the molecular and genetic mechanisms of drug addiction[J]. Prog Mol Biol Transl Sci,2016,137:229-252. doi:10.1016/bs.pmbts.2015.10.019 . |
| [57] | SALIM C, KAN A K, BATSAIKHAN E, et al. Neuropeptidergic regulation of compulsive ethanol seeking in C. elegans [J]. Sci Rep,2022,12(1):1804. doi:10.1038/s41598-022-05256-1 . |
| [58] | LEE J, JEE C, MCINTIRE S L. Ethanol preference in C. elegans [J]. Genes Brain Behav,2009,8(6):578-585. doi:10.1111/j.1601-183x.2009.00513.x . |
| [59] | KATNER S N, BREDHOLD K E, STEAGALL II K B, et al. Caenorhabditis elegans as a model system to identify therapeutics for alcohol use disorders[J]. Behav Brain Res,2019,365:7-16. doi:10 . |
| 1016/j.bbr.2019.02.015. | |
| [60] | MATHIES L D, BLACKWELL G G, AUSTIN M K, et al. SWI/SNF chromatin remodeling regulates alcohol response behaviors in Caenorhabditis elegans and is associated with alcohol dependence in humans[J]. Proc Natl Acad Sci USA,2015,112(10):3032-3037. doi:10.1073/pnas.1413451112 . |
| [61] | YANG Y F, CHEN P J, LIAO V H. Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans [J]. Chemosphere,2016,150:615-623. doi:10.1016/j.chemosp here.2016.01.068 . |
| [62] | HU C, HOU J, ZHU Y, et al. Multigenerational exposure to TiO2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling[J]. Environ Pollut,2020,263(Pt A):114376. doi:10.1016/j.envpol.2020.114376 . |
| [63] | DONG B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management[J]. Sci Total Environ,2024,908:168264. doi:10.1016/j.scito tenv.2023.168264 . |
| [64] | YU C W, LUK T C, LIAO V H. Long-term nanoplastics exposure results in multi and trans-generational reproduction decline associated with germline toxicity and epigenetic regulation in Caenorhabditis elegans [J]. J Hazard Mater,2021,412:125173. doi:10.1016/j.jhazmat.2021.125173 . |
| [65] | WAMUCHO A, HEFFLEY A, TSYUSKO O V. Epigenetic effects induced by silver nanoparticles in Caenorhabditis elegans after multigenerational exposure[J]. Sci Total Environ,2020,725:138523. doi:10.1016/j.scitotenv.2020.138523 . |
| [66] | ZHANG X, ZHONG H Q, CHU Z W, et al. Arsenic induces transgenerational behavior disorders in Caenorhabditis elegans and its underlying mechanisms[J]. Chemosphere,2020,252:126510. doi:10. 1016/j.chemosphere.2020.126510 . |
| [67] | MARTINI C, LIU Y F, GONG H, et al. CEBS update: Curated toxicology database with enhanced tools for data integration[J]. Nucleic Acids Res,2022,50(D1):D1156-D1163. doi:10.1093/nar/gkab981 . |
| [68] | 王炯,魏春明,赵森,等. 中毒判定辅助软件的研发与应用[J].刑事技术,2018,43(2):111-113. doi:10.16467/j.1008-3650.2018.02.005 . |
| WANG J, WEI C M, ZHAO S, et al. Development and application of determination-aided software for poisoning[J]. Xingshi Jishu,2018,43(2):111-113. |
| [1] | 周亦武, 刘良. 法医学中毒鉴定的挑战与展望[J]. 法医学杂志, 2025, 41(2): 107-110. |
| [2] | 陈轩龙, 袁强, 孙勇, 张碟, 伏建斌, 李立亮. 米酵菌酸中毒的法医学研究进展[J]. 法医学杂志, 2025, 41(2): 111-119. |
| [3] | 张帅, 许弘飞, 张志湘, 王盈, 朱少华. 阿霉素心脏毒性机制研究及法医学应用[J]. 法医学杂志, 2025, 41(2): 120-126. |
| [4] | 左雨蒙, 韩卫, 张建波, 李涛. 氯胺酮的分子生物学机制及毒性效应[J]. 法医学杂志, 2025, 41(2): 127-135. |
| [5] | 王荣帅, 黄锶哲, 王云云, 邓燕飞, 丁自娇, 张杰, 刘勇, 任亮, 刘良. 钙调控蛋白与核因子κB在急性MDMA染毒心肌细胞钙失衡中的作用机制[J]. 法医学杂志, 2025, 41(2): 144-151. |
| [6] | 王浩伟, 张晓星, 杨根梦, 王尚文, 曾晓锋. 铁死亡在α-鹅膏毒肽诱导肝细胞损伤中的作用[J]. 法医学杂志, 2025, 41(2): 152-159. |
| [7] | 李泽绮, 邢蕾, 张慧鸽, 何丽柔, 张佳奕, 汪佳琪, 刘世豪, 杨卫红. 美沙酮相关中毒案例分析[J]. 法医学杂志, 2025, 41(2): 160-167. |
| [8] | 余思, 夏静雪, 李长彬, 张刚彬, 张依平, 池雨欣, 杨卫红. 美沙酮治疗后死亡的药物代谢酶基因型分析1例[J]. 法医学杂志, 2025, 41(2): 197-200. |
| [9] | 余钢, 李国, 孙志炜, 张荆. 唑吡坦急性中毒死亡法医学鉴定1例[J]. 法医学杂志, 2025, 41(2): 194-197. |
| [10] | 杨辉煌, 刘霞, 王振, 石瑞, 史为博, 张国忠, 毕海涛, 李英敏. 敌草快中毒后延迟性死亡法医学鉴定1例[J]. 法医学杂志, 2025, 41(2): 181-184. |
| [11] | 刘慧讷, 杨晨光, 潘美辰, 朱玮玮, 陈新山, 董红梅. 氟乙酸钠多次投毒致死1例[J]. 法医学杂志, 2025, 41(2): 190-193. |
| [12] | 侯嘉祺, 林丽华, 王淑娟, 刘祥, 江敏, 柴乾乾, 周亦武, 刘茜. 多种降压药及镇静催眠药联合中毒致死1例[J]. 法医学杂志, 2025, 41(2): 187-189. |
| [13] | 黄若予, 王志永, 庞秋愉, 郑乐昕, 许弘飞, 朱少华, 张志湘, 王涛. 多次投毒溴敌隆致1死1伤的法医学鉴定[J]. 法医学杂志, 2025, 41(2): 176-180. |
| [14] | 张淼, 孔康懿, 袁慧雅, 李如波, 曹志鹏, 于浩, 何柏林, 吴旭. 右美沙芬滥用致中毒死亡2例[J]. 法医学杂志, 2025, 41(2): 184-186. |
| [15] | 袁宇浩, 余仲昊, 张佳欣, 马龙达, 赵枢泉, 刘宁国, 吴荣奇, 张飚, 廖信彪, 陈新, 何光龙, 周亦武. 胰岛素中毒的法医学鉴定指南建议[J]. 法医学杂志, 2025, 41(2): 168-175. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||