法医学杂志 ›› 2025, Vol. 41 ›› Issue (4): 314-325.DOI: 10.12116/j.issn.1004-5619.2025.350605
• 综述快检技术赋能法医毒物学多场景应用专题 • 上一篇 下一篇
田一鸣1,2(
), 严一博1(
), 文迪2, 施妍1,2(
)
收稿日期:2025-06-20
发布日期:2025-11-25
出版日期:2025-08-25
通讯作者:
施妍
作者简介:田一鸣(2002—),男,硕士研究生,主要从事法医毒物分析研究;E-mail:496789689@qq.com基金资助:
Yi-ming TIAN1,2(
), Yi-bo YAN1(
), Di WEN2, Yan SHI1,2(
)
Received:2025-06-20
Online:2025-11-25
Published:2025-08-25
Contact:
Yan SHI
摘要:
新精神活性物质(new psychoactive substances,NPS)具有更迭速度快、种类繁多、滥用潜力强等特征,已成为公共安全的重大威胁。目前,针对NPS的鉴识,在检测技术的时效性、灵敏度、准确度、抗基质干扰能力等方面均面临一定挑战。新型功能材料(novel functional materials,NFM)凭借高比表面积、可设计性、特异性识别能力及信号放大效应等特点,为NPS快速检测技术的革新提供了全新路径。本文系统综述了近十年来NFM在NPS快速检测中的创新应用,通过归纳与分析NFM在实验室检测和现场快速筛查中的研究与应用,总结了不同类型材料的特点与优势,结合智能化材料设计、跨学科融合及便携式集成设备的发展趋势,为NPS的快速检测方法开发提供理论参考,有助于提升禁毒实战中NPS的快速识别水平。
中图分类号:
田一鸣, 严一博, 文迪, 施妍. 新型功能材料在新精神活性物质快速检测中的研究进展[J]. 法医学杂志, 2025, 41(4): 314-325.
Yi-ming TIAN, Yi-bo YAN, Di WEN, Yan SHI. Research Progress on the Application of Novel Functional Materials for Rapid Detection of New Psychoactive Substances[J]. Journal of Forensic Medicine, 2025, 41(4): 314-325.
| 材料类型 | 特点 | 使用场景 | 主要优势 | 局限性 |
|---|---|---|---|---|
| 磁性纳米材料 | 吸附能力强,具有磁性,表面易功能化修饰 | 作为MSPE的吸附剂核心,常用于污水[ | 操作简便、快速,可利用外磁场实现快速分离,减少有机溶剂用量,易于与自动化设备和便携式检测平台集成[ | 存在选择性不足的问题,通常与分子印迹聚合物[ |
| 分子印迹聚合物 | 特异性强,结构稳定,可根据目标物结构设计以提高选择性 | 常用作固相萃取材料针对NPS进行识别[ | 对于目标物具有类抗体的高选择性,制备成本低于生物抗体,物理性质和化学性质较稳定,可重复使用 | 对于模板分子结构类似物具有交叉反应性,难以区分结构类似物、同分异构体,存在“模板泄露”风险[ |
| 适配体 | 具有高亲和力与特异性,方便设计合成,易于修饰 | 作为识别探针固定在固相载体或磁珠上,用于生物样本中特定NPS的高选择性萃取与富集。适配体试纸条可满足NPS现场快速检测的需求;亦可作为修饰物赋予金属有机框架[ | 识别精度可媲美甚至优于抗体,开发周期较动物免疫法短,批次间差异小,可在非生理条件下使用 | 针对小分子NPS的高性能适配体筛选难度大[ |
| 金属有机框架和共价有机框架 | 具有超高比表面积、有序可调的孔道结构 | 作为高效吸附剂,用于大体积样品(如污水)中超痕量NPS及其代谢物的广谱、高效富集 | 极高的吸附容量,可通过孔道工程实现基于尺寸和极性的筛分作用[ | 在水及复杂生物基质中的化学稳定性有待提高;对特定目标物的识别能力不足,常需与其他特异性材料复合使用[ |
表1 4种常见NFM在NPS样品前处理中的应用及特点
Tab. 1 Applications and characteristics of four common NFMs in NPS sample pretreatment
| 材料类型 | 特点 | 使用场景 | 主要优势 | 局限性 |
|---|---|---|---|---|
| 磁性纳米材料 | 吸附能力强,具有磁性,表面易功能化修饰 | 作为MSPE的吸附剂核心,常用于污水[ | 操作简便、快速,可利用外磁场实现快速分离,减少有机溶剂用量,易于与自动化设备和便携式检测平台集成[ | 存在选择性不足的问题,通常与分子印迹聚合物[ |
| 分子印迹聚合物 | 特异性强,结构稳定,可根据目标物结构设计以提高选择性 | 常用作固相萃取材料针对NPS进行识别[ | 对于目标物具有类抗体的高选择性,制备成本低于生物抗体,物理性质和化学性质较稳定,可重复使用 | 对于模板分子结构类似物具有交叉反应性,难以区分结构类似物、同分异构体,存在“模板泄露”风险[ |
| 适配体 | 具有高亲和力与特异性,方便设计合成,易于修饰 | 作为识别探针固定在固相载体或磁珠上,用于生物样本中特定NPS的高选择性萃取与富集。适配体试纸条可满足NPS现场快速检测的需求;亦可作为修饰物赋予金属有机框架[ | 识别精度可媲美甚至优于抗体,开发周期较动物免疫法短,批次间差异小,可在非生理条件下使用 | 针对小分子NPS的高性能适配体筛选难度大[ |
| 金属有机框架和共价有机框架 | 具有超高比表面积、有序可调的孔道结构 | 作为高效吸附剂,用于大体积样品(如污水)中超痕量NPS及其代谢物的广谱、高效富集 | 极高的吸附容量,可通过孔道工程实现基于尺寸和极性的筛分作用[ | 在水及复杂生物基质中的化学稳定性有待提高;对特定目标物的识别能力不足,常需与其他特异性材料复合使用[ |
| 目标物 | 检测技术 | 检材类型 | 检出限/(ng·mL-1) | 储存条件 | 结果判读方式 | 定性定量方式 | 文献 |
|---|---|---|---|---|---|---|---|
| 依托咪酯和美托咪酯 | 荧光免疫分析法 | 水 | 0.3 | - | 检测线显色 | 全定量 | [ |
| 合成大麻素 | 间接竞争性ELISA法、胶体金免疫层析法 | 头发 | 0.024、0.046 | - | 检测线显色;实验室仪器检测 | 全定量 | [ |
| 合成大麻素 | 侧流免疫分析法、ELISA法 | 口腔液 | 0.08、0.04 | 室温下干燥保存、-20 ℃保存 | 检测线显色;实验室仪器检测 | 全定量 | [ |
2,5-二甲氧基- 4-溴苯乙胺 | 侧流免疫分析法、ELISA法 | 尿液 | 15、6 | 室温下干燥保存、-28 ℃保存 | 检测线显色;实验室仪器检测 | 全定量 | [ |
表2 免疫检测技术在NPS检测中的应用
Tab. 2 Application of immunoassay technology in NPS detection
| 目标物 | 检测技术 | 检材类型 | 检出限/(ng·mL-1) | 储存条件 | 结果判读方式 | 定性定量方式 | 文献 |
|---|---|---|---|---|---|---|---|
| 依托咪酯和美托咪酯 | 荧光免疫分析法 | 水 | 0.3 | - | 检测线显色 | 全定量 | [ |
| 合成大麻素 | 间接竞争性ELISA法、胶体金免疫层析法 | 头发 | 0.024、0.046 | - | 检测线显色;实验室仪器检测 | 全定量 | [ |
| 合成大麻素 | 侧流免疫分析法、ELISA法 | 口腔液 | 0.08、0.04 | 室温下干燥保存、-20 ℃保存 | 检测线显色;实验室仪器检测 | 全定量 | [ |
2,5-二甲氧基- 4-溴苯乙胺 | 侧流免疫分析法、ELISA法 | 尿液 | 15、6 | 室温下干燥保存、-28 ℃保存 | 检测线显色;实验室仪器检测 | 全定量 | [ |
| [1] | 沈敏. 新精神活性物质的应对与挑战[J].法医学杂志,2021,37(4):453-458. doi:10.12116/j.issn.1004-5619.2021.310204 . |
| SHEN M. The response and challenge of new psychoactive substances[J]. Fayixue Zazhi,2021,37(4):453-458. | |
| [2] | GAO P, MUKHERJEE S, HUSSAIN M Z, et al. Porphyrin-based MOFs for sensing environmental pollutants[J]. Chem Eng J,2024,492:152377. doi:10.1016/j.cej.2024.152377 . |
| [3] | ZHANG Y, CHEN M, LI L S, et al. Recent advances in microextraction techniques using sustainable green solvents for mass spectrometry analysis[J]. Trac Trends Anal Chem,2024,170:117412. doi:10.1016/j.trac.2023.117412 . |
| [4] | CHEN S M, QIE Y Q, HUA Z D, et al. Preparation of poly(methacrylic acid-co-ethylene glycol dimethacrylate)-functionalized magnetic polydopamine nanoparticles for the extraction of six cannabinoids in wastewater followed by UHPLC-MS/MS[J]. Talanta,2023,264:124752. doi:10.1016/j.talanta.2023. 124752 . |
| [5] | GUTENEVA N V, ZNOYKO S L, ORLOV A V, et al. Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: Application to the determination of drugs of abuse[J]. Microchim Acta,2019,186(9):621. doi:10.1007/s00604-019-3726-9 . |
| [6] | LING J, ZHANG W Q, XIANG P, et al. Trace detection of methcathinone in sewage using targeted extraction based on magnetic molecularly imprinted polymers coupled with liquid chromatography-tandem mass spectrometry[J]. Anal Methods,2023,15(36):4777-4784. doi:10.1039/d3ay01224g . |
| [7] | LI X C, JIANG L, DI B, et al. Preparation of amphiphilic poly(divinylbenzene-co-N-vinylpyrrolidone)- functionalized polydopamine magnetic nanoadsorbents for enrichment of synthetic cannabinoids in wastewater[J]. Anal Methods,2024,16(24):3968-3982. doi:10.1039/d4ay00711e . |
| [8] | LOWDON J W, ALKIRKIT S M O, MEWIS R E, et al. Engineering molecularly imprinted polymers (MIPs) for the selective extraction and quantification of the novel psychoactive substance (NPS) methoxphenidine and its regioisomers[J]. Analyst,2018,143(9):2002-2007. doi:10.1039/c8an00131f . |
| [9] | JIANG X, WU F S, HUANG X Y, et al. Fabrication of a molecularly-imprinted-polymer-based graphene oxide nanocomposite for electrochemical sensing of new psychoactive substances[J]. Nanomaterials (Basel),2023,13(4):751. doi:10.3390/nano13040751 . |
| [10] | SORRIBES-SORIANO A, ARMENTA S, ESTEVE-TURRILLAS F A, et al. Tuning the selectivity of molecularly imprinted polymer extraction of arylcyclohexylamines: From class-selective to specific[J]. Anal Chim Acta,2020,1124:94-103. doi:10.1016/j.aca.2020.05.035 . |
| [11] | NI Y, JIANG D, AN X M, et al. Low-triggering-potential electrochemiluminescence based on mental-organic frameworks encapsulation of ruthenium for synthetic cathinone detection by coupling photonic crystal light-scattering signal amplification of covalent-organic frameworks[J]. Anal Chim Acta,2024,1312:342763. doi:10.1016/j.aca.2024.342763 . |
| [12] | WANG L L, ALKHAMIS O, CANOURA J, et al. Rapid nuclease-assisted selection of high-affinity small-molecule aptamers[J]. J Am Chem Soc,2024,146(31):21296-21307. doi:10.1021/jacs.4c00748 . |
| [13] | SHI Y R, XU R L, WANG S H, et al. Fluorinated-squaramide covalent organic frameworks for high-performance and interference-free extraction of synthetic cannabinoids[J]. Adv Sci (Weinh),2023,10(32):e2302925. doi:10.1002/advs.202302925 . |
| [14] | LIU C, WU S F, YAN Y B, et al. Application of magnetic particles in forensic science[J]. Trac Trends Anal Chem,2019,121:115674. doi:10.1016/j.trac.2019.115674 . |
| [15] | CAO R, CHEN J W, PANG N J, et al. Simultaneous enrichment and ultra-high sensitivity detection of multi-structural synthetic cannabinoids in large-volume wastewater[J]. Microchim Acta,2025,192(5):279. doi:10.1007/s00604-025-07128-7 . |
| [16] | SUN Y K, HAN Y, ZHAO L H, et al. Construction of a two-dimensional magnetic solid phase extraction microfluidic chip/tandem mass spectrometry platform for the determination of cytarabine in plasma[J]. Microchem J,2024,207:112150. doi:10. 1016/j.microc.2024.112150 . |
| [17] | SARVUTIENE J, PRENTICE U, RAMANAVICIUS S, et al. Molecular imprinting technology for biomedical applications[J]. Biotechnol Adv,2024,71:108318. doi:10.1016/j.biotechadv.2024.108318 . |
| [18] | LI Y X, LUO L X, KONG Y Q, et al. Recent advances in molecularly imprinted polymer-based electrochemical sensors[J]. Biosens Bioelectron,2024,249:116018. doi:10.1016/j.bios.2024.116018 . |
| [19] | CHEN H, WU F S, XU Y B, et al. Synthesis, characterization, and evaluation of selective molecularly imprinted polymers for the fast determination of synthetic cathinones[J]. RSC Adv,2021,11(47):29752-29761. doi:10.1039/d1ra01330k . |
| [20] | SORRIBES-SORIANO A, ESTEVE-TURRILLAS F A, ARMENTA S, et al. Amphetamine-type stimulants analysis in oral fluid based on molecularly imprinting extraction[J]. Anal Chim Acta,2019,1052:73-83. doi:10.1016/j.aca.2018.11.046 . |
| [21] | MARTINS D, FERNANDES C, MENDES R F, et al. Bonding to psychedelics: Synthesis of molecularly imprinted polymers targeting 4-bromo-2,5- dimethoxyphenethylamine (2C-B)[J]. Appl Sci,2024,14(4):1377. doi:10.3390/app14041377 . |
| [22] | HAN C, TAN D Q, WANG Y, et al. Selective extraction of synthetic cathinones new psychoactive substances from wastewater, urine and cocktail using dummy molecularly imprinted polymers[J]. J Pharm Biomed Anal,2022,215:114765. doi:10.1016/j.jpba.2022.114765 . |
| [23] | PAREDES-RAMOS M, SABÍN-LÓPEZ A, PEÑA-GARCÍA J, et al. Computational aided acetamino-phen-phthalic acid molecularly imprinted polymer design for analytical determination of known and new developed recreational drugs[J]. J Mol Graph Model,2020,100:107627. doi:10.1016/j.jmgm.2020. 107627 . |
| [24] | SÁNCHEZ-GONZÁLEZ J, ODOARDI S, BERMEJO A M, et al. HPLC-MS/MS combined with membrane-protected molecularly imprinted polymer micro-solid-phase extraction for synthetic cathinones monitoring in urine[J]. Drug Test Anal,2019,11(1):33-44. doi:10.1002/dta.2448 . |
| [25] | GARCÍA-ATIENZA P, ESTEVE-TURRILLAS F A, ARMENTA S, et al. Ethylphenidate determination in oral fluids by molecularly imprinted polymer extraction and ion mobility spectrometry[J]. Microchem J,2022,178:107423. doi:10.1016/j.microc.2022.107423 . |
| [26] | LING J, ZHANG W Q, CHENG Z J, et al. Recyclable magnetic fluorescence sensor based on Fe3O4 and carbon dots for detection and purification of methcathinone in sewage[J]. ACS Appl Mater Interfaces,2022,14(3):3752-3761. doi:10.1021/acsami.1c20170 . |
| [27] | YAN Y B, JIANG L, ZHANG S, et al. Specific “light-up” sensor made easy: An aggregation induced emission monomer for molecular imprinting[J]. Biosens Bioelectron,2022,205:114113. doi:10.1016/j.bios. 2022.114113 . |
| [28] | LIU L L, GRILLO F, CANFAROTTA F, et al. Carboxyl-fentanyl detection using optical fibre grating-based sensors functionalised with molecularly imprinted nanoparticles[J]. Biosens Bioelectron,2021,177:113002. doi:10.1016/j.bios.2021.113002 . |
| [29] | BATTAL D, AKGÖNÜLLÜ S, YALCIN M S, et al. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine[J]. Biosens Bioelectron,2018,111:10-17. doi:10.1016/j.bios.2018.03.055 . |
| [30] | AKGÖNÜLLÜ S, BATTAL D, YALCIN M S, et al. Rapid and sensitive detection of synthetic cannabinoids JWH-018, JWH-073 and their metabolites using molecularly imprinted polymer-coated QCM nanosensor in artificial saliva[J]. Microchem J,2020,153:104454. doi:10.1016/j.microc.2019.104454 . |
| [31] | SÁNCHEZ-GONZÁLEZ J, ODOARDI S, BERMEJO A M, et al. Development of a micro-solid-phase extraction molecularly imprinted polymer technique for synthetic cannabinoids assessment in urine followed by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A,2018,1550:8-20. doi:10.1016/j.chroma.2018.03.049 . |
| [32] | LI J J, WANG Y, LIU A R, et al. Sensitive detection of synthetic cannabinoids in human blood using magnetic polydopamine molecularly imprinted polymer nanocomposites[J]. Analyst,2023,148(19):4850-4856. doi:10.1039/d3an01135f . |
| [33] | LI J H, LING J, CAI Z H, et al. Rapid and sensitive detection of etomidate based on functionalized copper nanoclusters fluorescent probe[J]. Forensic Sci Int,2024,361:112136. doi:10.1016/j.forsciint.2024.112136 . |
| [34] | TORRES-CARTAS S, MESEGUER-LLORET S, CATALÁ-ICARDO M, et al. Aptamer-modified magnetic nanoparticles for extraction of atrazine in environmental water samples[J]. Microchem J,2023,191:108902. doi:10.1016/j.microc.2023.108902 . |
| [35] | CANOURA J, LIU Y Z, PERRY J, et al. Suite of aptamer-based sensors for the detection of fentanyl and its analogues[J]. ACS Sens,2023,8(5):1901-1911. doi:10.1021/acssensors.2c02463 . |
| [36] | ZHOU Q Q, XU Z G, LIU Z M. Molecularly imprinting-aptamer techniques and their applications in molecular recognition[J]. Biosensors (Basel),2022,12(8):576. doi:10.3390/bios12080576 . |
| [37] | BIZYAEVA A A, BUNIN D A, MOISEENKO V L, et al. The functional role of loops and flanking sequences of G-quadruplex aptamer to the hemagglutinin of influenza A virus[J]. Int J Mol Sci,2021,22(5):2409. doi:10.3390/ijms22052409 . |
| [38] | MATTAROZZI M, TOMA L, BERTUCCI A, et al. Aptamer-based assays: Strategies in the use of aptamers conjugated to magnetic micro- and nanobeads as recognition elements in food control[J]. Anal Bioanal Chem,2022,414(1):63-74. doi:10.1007/s00216-021-03501-6 . |
| [39] | WANG Z B, WANG C, HU Q M, et al. Covalent-metal organic frameworks: Preparation and applications[J]. Chem Eng J,2024,483:149217. doi:10.1016/j.cej.2024.149217 . |
| [40] | MARTÍNEZ-PÉREZ-CEJUELA H, CONEJERO M, AMORÓS P, et al. Metal-organic frameworks as promising solid-phase sorbents for the isolation of third-generation synthetic cannabinoids in biological samples[J]. Anal Chim Acta,2023,1246:340887. doi:10.1016/j.aca.2023.340887 . |
| [41] | LU Y J, CAO Y Q, TANG X H, et al. Deep learning-assisted mass spectrometry imaging for preliminary screening and pre-classification of psychoactive substances[J]. Talanta,2024,272:125757. doi:10.1016/j.talanta.2024.125757 . |
| [42] | RÁCZ N, VERESS T, NAGY J, et al. Separation of isomers of JWH-122 on porous graphitic carbon stationary phase with non-aqueous mobile phase using intelligent software[J]. J Chromatogr Sci,2016,54(10):1735-1742. doi:10.1093/chromsci/bmw131 . |
| [43] | WANG J C, ZHAO J, XIAO L, et al. Bio-inspired 3D sub-microstructures coupling of Au nanoparticles for SERS detection of trace fentanyl[J]. Adv Funct Mater,2024,34(52):2411048. doi:10.1002/adfm.202411048 . |
| [44] | MUHAMADALI H, WATT A, XU Y, et al. Rapid detection and quantification of novel psychoactive substances (NPS) using Raman spectroscopy and surface-enhanced Raman scattering[J]. Front Chem,2019,7:412. doi:10.3389/fchem.2019.00412 . |
| [45] | WANG B J, HAN Y, ZHANG L, et al. Surface-enhanced Raman scattering based on noble metal nanoassemblies for detecting harmful substances in food[J]. Crit Rev Food Sci Nutr,2025,65(27):5431-5452. doi:10.1080/10408398.2024.2413656 . |
| [46] | DOGRUER ERKOK S, GALLOIS R, LEEGWATER L, et al. Combining surface-enhanced Raman spectroscopy (SERS) and paper spray mass spectrometry (PS-MS) for illicit drug detection[J]. Talanta,2024,278:126414. doi:10.1016/j.talanta.2024.126414 . |
| [47] | LI Y Z, DING Z X, WANG H Y, et al. Reversible swell-shrink hydrogel microspheres for high-selectivity digital SERS analysis of nonvolatile fentanyl in simulated breath aerosols[J]. Anal Chem,2025,97(6):3579-3588. doi:10.1021/acs.analchem. 4c05999 . |
| [48] | MO Y, ZHANG X P, ZOU K, et al. Au ordered array substrate for rapid detection and precise identification of etomidate in e-liquid through surface-enhanced Raman spectroscopy[J]. Nanomaterials (Basel),2024,14(23):1958. doi:10.3390/nano14231958 . |
| [49] | MASTERSON A N, HATI S, REN G, et al. Enhancing nonfouling and sensitivity of surface-enhanced Raman scattering substrates for potent drug analysis in blood plasma via fabrication of a flexible plasmonic patch[J]. Anal Chem,2021,93(4):2578-2588. doi:10.1021/acs.analchem.0c04643 . |
| [50] | WANG K, XU B, WU J F, et al. Elucidating fentanyls differentiation from morphines in chemical and biological samples with surface-enhanced Raman spectroscopy[J]. Electrophoresis,2019,40(16/17):2193-2203. doi:10.1002/elps.201900004 . |
| [51] | SU X M, LIU X Y, XIE Y C Z, et al. Quantitative label-free SERS detection of trace fentanyl in biofluids with a freestanding hydrophobic plasmonic paper biosensor[J]. Anal Chem,2023,95(7):3821-3829. doi:10.1021/acs.analchem.2c05211 . |
| [52] | BARANWAL J, BARSE B, GATTO G, et al. Electrochemical sensors and their applications: A review[J]. Chemosensors,2022,10(9):363. doi:10. 3390/chemosensors10090363 . |
| [53] | DE FARIA L V, MACEDO A A, ARANTES L C, et al. Novel disposable and portable 3D-printed electrochemical apparatus for fast and selective screening of 25E-NBOH in forensic samples[J]. Talanta,2024,269:125476. doi:10.1016/j.talanta.2023. 125476 . |
| [54] | ZHAO Z D, HE Y, QI X R, et al. A series of ultrasensitive electrocatalysts Fe-MOF/MWCNTs for fentanyl determination[J]. Analyst,2023,148(8):1838-1847. doi:10.1039/d3an00156c . |
| [55] | ZHAO Z D, QI X R, HE Y, et al. Oxygen vacancy-rich Fe2(MoO4)3 combined with MWCNTs for electrochemical sensors of fentanyl and its analogs[J]. Mikrochim Acta,2024,191(3):159. doi:10.1007/s00604-024-06222-6 . |
| [56] | LIMA C D, MAGALHÃES DE ALMEIDA MELO L, ARANTES L C, et al. Simple and selective screening method for the synthetic cathinone MDPT in forensic samples using carbon nanofiber screen-printed electrodes[J]. Talanta,2024,269:125375. doi:10.1016/j.talanta.2023.125375 . |
| [57] | ARAÚJO D S, ARANTES L C, FARIA L V, et al. Electrochemistry of 5F-MDMB-PICA synthetic cannabinoid using a boron-doped diamond electrode with short anodic-cathodic pretreatment: A simple screening method for application in forensic analysis[J]. Electrochim Acta,2023,454:142356. doi:10. 1016/j.electacta.2023.142356 . |
| [58] | BALABAN S, MAN E, DURMUS C, et al. Sensor platform with a custom-tailored aptamer for diagnosis of synthetic cannabinoids[J]. Electroanal,2020,32(3):656-665. doi:10.1002/elan.201900670 . |
| [59] | MERLI D, LIO E, PROTTI S, et al. Molecularly imprinted polymer-based voltammetric sensor for amino acids/indazole derivatives synthetic cannabinoids detection[J]. Anal Chim Acta,2024,1288:342151. doi:10.1016/j.aca.2023.342151 . |
| [60] | CAO Q Y, JIANG D, XU F M, et al. Au-doped MOFs catalyzed electrochemiluminescence platform coupled with target-induced self-enrichment for detection of synthetic cannabinoid RCS-4[J]. Mikrochim Acta,2022,189(9):313. doi:10.1007/s00604-022-05397-0 . |
| [61] | SHISHKANOVA T V, POSPÍŠILOVÁ E, TRCHOVÁ M, et al. Zwitterionic oligomers of 3-aminobenzoic acid on screen-printed electrodes: Structure, properties and forensic application[J]. Analyst,2024,149(4):1121-1131. doi:10.1039/d3an01700a . |
| [62] | ZHANG X Y, TANG Y T, WU H, et al. Integrated aptasensor array for sweat drug analysis[J]. Anal Chem,2022,94(22):7936-7943. doi:10.1021/acs.analchem.2c00736 . |
| [63] | RAZAVIPANAH I, ALIPOUR E, DEIMINIAT B, et al. A novel electrochemical imprinted sensor for ultrasensitive detection of the new psychoactive substance “Mephedrone”[J]. Biosens Bioelectron,2018,119:163-169. doi:10.1016/j.bios.2018.08.016 . |
| [64] | MARENCO A J, PILLAI R G, HARRIS K D, et al. Electrochemical determination of fentanyl using carbon nanofiber-modified electrodes[J]. ACS Omega,2024,9(15):17592-17601. doi:10.1021/acsomega.4c00816 . |
| [65] | GONZÁLEZ-HERNÁNDEZ J, MOYA-ALVARADO G, ALVARADO-GÁMEZ A L, et al. Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome c on multi-walled carbon nanotubes modified screen-printed carbon electrodes[J]. Mikrochim Acta,2022,189(12):483. doi:10.1007/s00604-022-05578-x . |
| [66] | JUN D, SAMMIS G, REZAZADEH-AZAR P, et al. Development of a graphene-oxide-deposited carbon electrode for the rapid and low-level detection of fentanyl and derivatives[J]. Anal Chem,2022,94(37):12706-12714. doi:10.1021/acs.analchem.2c02057 . |
| [67] | XU F, ZHOU J D, YANG H, et al. Recent advances in exhaled breath sample preparation technologies for drug of abuse detection[J]. Trac Trends Anal Chem,2022,157:116828. doi:10.1016/j.trac.2022.116828 . |
| [68] | YEN Y T, CHANG Y J, TSENG Y T, et al. Screening of synthetic cannabinoids in herbal mixtures using 1-dodecanethiol-gold nanoclusters[J]. Sens Actuators B Chem,2022,353:131151. doi:10.1016/j.snb.2021.131151 . |
| [69] | WANG Y H, DONG J H, LIU Y, et al. Zinc(Ⅱ)- enhanced excimer probe for recognition of MDMB-CA synthetic cannabinoids[J]. Angew Chem Int Ed Engl,2025,64(17):e202423576. doi:10.1002/anie. 202423576 . |
| [70] | YEN Y T, LIN Y S, CHEN T Y, et al. Carbon dots functionalized papers for high-throughput sensing of 4-chloroethcathinone and its analogues in crime sites[J]. R Soc Open Sci,2019,6(9):191017. doi:10.1098/rsos.191017 . |
| [71] | LIU Q Q, XU X X, LIU L Q, et al. Fluorescent microsphere-based strip for sensitive and quantitative detection of etomidate and metomidate[J]. Analyst,2025,150(3):542-551. doi:10.1039/d4an01213e . |
| [72] | CHEN X Y, MA X, WANG X, et al. Establishment of broad-specificity monoclonal antibody-based immunoassay for rapid detection of indole-type and indazole-type synthetic cannabinoids and metabolites[J]. Anal Chem,2024,96(46):18445-18454. doi:10.1021/acs.analchem.4c03658 . |
| [73] | FOJTÍKOVÁ L, ŠULÁKOVÁ A, BLAŽKOVÁ M, et al. Lateral flow immunoassay and enzyme linked immunosorbent assay as effective immunomethods for the detection of synthetic cannabinoid JWH-200 based on the newly synthesized hapten[J]. Toxicol Rep,2017,5:65-75. doi:10.1016/j.toxrep.2017.12.004 . |
| [74] | ŠULÁKOVÁ A, FOJTÍKOVÁ L, HOLUBOVÁ B, et al. Two immunoassays for the detection of 2C-B and related hallucinogenic phenethylamines[J]. J Pharmacol Toxicol Methods,2019,95:36-46. doi:10.1016/j.vascn.2018.11.001 . |
| [75] | DEVILLE M, BAILLY R, GAUTHIER N, et al. Biochip array technology for new psychoactive substances detection in biological samples: Evaluation of the specificity of the Randox Evidence Investigator® [J]. Ann Clin Biochem,2022,59(5):357-362. doi:10.1177/00045632221111751 . |
| [76] | MUSILE G, AGARD Y, WANG L, et al. Paper-based microfluidic devices: On-site tools for crime scene investigation[J]. Trac Trends Anal Chem,2021,143:116406. doi:10.1016/j.trac.2021.116406 . |
| [77] | MCNEILL L, PEARSON C, MEGSON D, et al. Origami chips: Development and validation of a paper-based Lab-on-a-Chip device for the rapid and cost-effective detection of 4-methylmethcathinone (mephedrone) and its metabolite, 4-methylephedrine in urine[J]. Forensic Chem,2021,22:100293. doi:10.1016/j.forc.2020.100293 . |
| [78] | MARTÍNEZ-PÉREZ-CEJUELA H, GARCÍA-ATIENZA P, SIMÓ-ALFONSO E F, et al. Micro-paper-based analytical device decorated with metal-organic frameworks for the assay of synthetic cannabinoids in oral fluids coupled to ion mobility spectrometry[J]. Microchim Acta,2023,190(7):271. doi:10.1007/s00604-023-05844-6 . |
| [79] | SALEMMILANI R, MOSKOVITS M, MEINHART C D. Microfluidic analysis of fentanyl-laced heroin samples by surface-enhanced Raman spectroscopy in a hydrophobic medium[J]. Analyst,2019,144(9):3080-3087. doi:10.1039/c9an00168a . |
| [80] | MCNEILL L, MEGSON D, LINTON P E, et al. Lab-on-a-Chip approaches for the detection of controlled drugs, including new psychoactive substances: A systematic review[J]. Forensic Chem,2021,26:100370. doi:10.1016/j.forc.2021.100370 . |
| [1] | 高妍, 陈芳, 夏文涛, 杨小萍, 王泽宇, 杨泽人, 刘霞, 盛延良. Chirp ABR的研究进展及其在法医学听力鉴定中的应用展望[J]. 法医学杂志, 2025, 41(4): 387-393. |
| [2] | 李文艳, 赵晋峰, 刘唯琛, 吕诗婧, 张佳欣, 张旭东, 尉志文, 贠克明, 张潮. 虫螨腈及其代谢物在大鼠体内的毒物代谢动力学[J]. 法医学杂志, 2025, 41(4): 380-387. |
| [3] | 沈敏. 证据可靠性视角下的法医毒物学实践与思考[J]. 法医学杂志, 2025, 41(4): 297-306. |
| [4] | 施妍. 快检技术赋能法医毒物学的实践与挑战[J]. 法医学杂志, 2025, 41(4): 307-313. |
| [5] | 韦丽霞, 刘波, 杨小圆, 张茜, 兰艺凤, 张潮, 贾娟, 张丹, 尉志文, 贠克明, 陈哲. 基于核酸适配体功能化氧化石墨烯荧光传感器检测氯胺酮及去甲氯胺酮[J]. 法医学杂志, 2025, 41(4): 326-339. |
| [6] | 李嘉豪, 凌江, 蔡子豪, 郑梓源, 丁艳君. 基于铜纳米酶和分子印迹技术的替来他明快速检测荧光探针开发[J]. 法医学杂志, 2025, 41(4): 355-363. |
| [7] | 郭紫雯, 邱天禹, 曹玥. 基于表面增强拉曼光谱与机器学习的依托咪酯及其结构类似物的快速鉴识[J]. 法医学杂志, 2025, 41(4): 364-370. |
| [8] | 何泰伸, 吕中将, 孙一铭, 李雨洋, 叶懿, 林瑶, 廖林川. 基于金纳米团簇-荧光素比率荧光探针的氰化物快速分析[J]. 法医学杂志, 2025, 41(4): 340-347. |
| [9] | 唐梦瑶, 黄博宇, 刘翠梅, 刘雪燕, 贾薇, 花镇东. 基于便携式质谱仪的依托咪酯及其类似物的快速筛查[J]. 法医学杂志, 2025, 41(4): 348-354. |
| [10] | 宝景春, 赵晶京, 李骄勇, 孟菁华, 王晓龙, 詹晓妮, 姚军, 吴旭. 法医从业者岗位胜任力评价模型的构建[J]. 法医学杂志, 2025, 41(4): 371-379. |
| [11] | 刘纤纤, 张涵, 张世宏. 苯中毒致再生障碍性贫血残疾等级评定1例[J]. 法医学杂志, 2025, 41(3): 289-291. |
| [12] | 白一帆, 赵禾苗, 陈静, 刘洪迪, 杨瑞琴, 王冲. 法医转录组学技术在体液斑迹组织来源推断中的应用[J]. 法医学杂志, 2025, 41(3): 260-266. |
| [13] | 廖琦, 刘永红, 焦英, 杨晓莹, 杨怡华, 刘翠梅, 高瑞霞. 台式低场核磁共振技术的发展及其在禁毒领域中的应用[J]. 法医学杂志, 2025, 41(3): 267-276. |
| [14] | 刘冬梅, 朱英芝, 于凯丽, 陈捷敏, 刘良. 眶内眼球外异物致视神经损伤2例[J]. 法医学杂志, 2025, 41(3): 286-288. |
| [15] | 苏莉, 汪露, 钱起玥, 李倩倩, 杨丽, 胡永良. 凹陷型锁骨菱形窝用于胸片同一认定1例[J]. 法医学杂志, 2025, 41(3): 283-285. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||