| [1] | KHAN F, TRITSCHLER T, KAHN S R, et al. Venous thromboembolism[J]. Lancet,2021,398(10294):64-77. doi:10.1016/S0140-6736(20)32658-1 . | 
																													
																						| [2] | LUTSEY P L, ZAKAI N A. Epidemiology and prevention of venous thromboembolism[J]. Nat Rev Cardiol,2023,20(4):248-262. doi:10.1038/s41569-022-00787-6 . | 
																													
																						| [3] | FANOLA C L, NORBY F L, SHAH A M, et al. Incident heart failure and long-term risk for venous thromboembolism[J]. J Am Coll Cardiol,2020,75(2):148-158. doi:10.1016/j.jacc.2019.10.058 . | 
																													
																						| [4] | CHOPARD R, ALBERTSEN I E, PIAZZA G. Diagnosis and treatment of lower extremity venous thromboembolism: A review[J]. JAMA,2020,324(17):1765-1776. doi:10.1001/jama.2020.17272 . | 
																													
																						| [5] | HUANG J J, ZHUO J Y, WANG Q, et al. The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age[J]. Forensic Sci Med Pathol,2024,20(4):1155-1165. doi:10.1007/s12024-024-00818-3 . | 
																													
																						| [6] | 吴娟娟,黄俊杰,张煜,等. IL-10、TGF-β1在小鼠深静脉血栓中的时序性变化[J].法医学杂志,2024,40(2):179-185. doi:10.12116/j.issn.1004-5619.2023.430506 . | 
																													
																						|  | WU J J, HUANG J J, ZHANG Y, et al. Time-dependent sequential changes of IL-10 and TGF-β1 in mice with deep vein thrombosis[J]. Fayixue Zazhi,2024,40(2):179-185. | 
																													
																						| [7] | NOSAKA M, ISHIDA Y, KIMURA A, et al. Time-dependent appearance of intrathrombus neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application to thrombus age determination[J]. Int J Legal Med,2009,123(3):235-240. doi:10.1007/s00414-009-0324-0 . | 
																													
																						| [8] | JAILLON S, PONZETTA A, DI MITRI D, et al. Neutrophil diversity and plasticity in tumour progression and therapy[J]. Nat Rev Cancer,2020,20(9):485-503. doi:10.1038/s41568-020-0281-y . | 
																													
																						| [9] | CASTANHEIRA F V S, KUBES P. Neutrophils and NETs in modulating acute and chronic inflammation[J]. Blood,2019,133(20):2178-2185. doi:10.1182/blood-2018-11-844530 . | 
																													
																						| [10] | BRILL A, FUCHS T A, CHAUHAN A K, et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models[J]. Blood,2011,117(4):1400-1407. doi:10.1182/blood-2010-05-287623 . | 
																													
																						| [11] | ETULAIN J, MARTINOD K, WONG S L, et al. P-selectin promotes neutrophil extracellular trap formation in mice[J]. Blood,2015,126(2):242-246. doi:10.1182/blood-2015-01-624023 . | 
																													
																						| [12] | BRINKMANN V, REICHARD U, GOOSMANN C, et al. Neutrophil extracellular traps kill bacteria[J]. Science,2004,303(5663):1532-1535. doi:10.1126/science.1092385 . | 
																													
																						| [13] | BRILL A, FUCHS T A, SAVCHENKO A S, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice[J]. J Thromb Haemost,2012,10(1):136-144. doi:10.1111/j.1538-7836.2011.04544.x . | 
																													
																						| [14] | DYER M R, CHEN Q W, HALDEMAN S, et al. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA[J]. Sci Rep,2018,8(1):2068. doi:10.1038/s41598-018-20479-x . | 
																													
																						| [15] | THÅLIN C, LUNDSTRÖM S, SEIGNEZ C, et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer[J]. PLoS One,2018,13(1):e0191231. doi:10.1371/jour nal.pone.0191231 . | 
																													
																						| [16] | THÅLIN C, HISADA Y, LUNDSTRÖM S, et al. Neutrophil extracellular traps: Villains and targets in arterial, venous, and cancer-associated thrombosis[J]. Arterioscler Thromb Vasc Biol,2019,39(9):1724-1738. doi:10.1161/ATVBAHA.119.312463 . | 
																													
																						| [17] | 尧梦婷,方储存,王子龙,等. 中性粒细胞胞外诱捕网在深静脉血栓形成机制中的研究进展[J].赣南医学院学报,2024,44(4):343-348. doi:10.3969/j.issn.1001-5779.2024.04.003 . | 
																													
																						|  | YAO M T, FANG C C, WANG Z L, et al. Research progress of neutrophil extracellular traps in deep vein thrombosis mechanism[J]. Gannan Yixue-yuan Xuebao,2024,44(4):343-348. | 
																													
																						| [18] | SARAVANAN R, CHOONG Y K, LIM C H, et al. Cell-free DNA promotes thrombin autolysis and ge-neration of thrombin-derived C-terminal fragments[J]. Front Immunol,2021,12:593020. doi:10.3389/fimmu.2021.593020 . | 
																													
																						| [19] | MASUDA S, NAKAZAWA D, SHIDA H, et al. NETosis markers: Quest for specific, objective, and quantitative markers[J]. Clin Chim Acta,2016,459:89-93. doi:10.1016/j.cca.2016.05.029 . | 
																													
																						| [20] | HAKKIM A, FUCHS T A, MARTINEZ N E, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation[J]. Nat Chem Biol,2011,7(2):75-77. doi:10.1038/nchembio.496 . | 
																													
																						| [21] | LI P X, LI M, LINDBERG M R, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps[J]. J Exp Med,2010,207(9):1853-1862. doi:10.1084/jem.20100239 . | 
																													
																						| [22] | MAURACHER L M, POSCH F, MARTINOD K, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients[J]. J Thromb Haemost,2018,16(3):508-518. doi:10.1111/ jth.13951 . | 
																													
																						| [23] | BOETTCHER M, ESSER M, TRAH J, et al. Markers of neutrophil activation and extracellular traps formation are predictive of appendicitis in mice and humans: A pilot study[J]. Sci Rep,2020,10(1):18240. doi:10.1038/s41598-020-74370-9 . | 
																													
																						| [24] | NOMURA K, MIYASHITA T, YAMAMOTO Y, et al. Citrullinated histone H3: Early biomarker of neutrophil extracellular traps in septic liver damage[J]. J Surg Res,2019,234:132-138. doi:10.1016/j.jss.2018.08.014 . | 
																													
																						| [25] | EL-SAYED O M, DEWYER N A, LUKE C E, et al. Intact Toll-like receptor 9 signaling in neutrophils modulates normal thrombogenesis in mice[J]. J Vasc Surg,2016,64(5):1450-1458.e1. doi:10.1016/ | 
																													
																						|  | j.jvs.2015.08.070. | 
																													
																						| [26] | NOSAKA M, ISHIDA Y, KUNINAKA Y, et al. Relationship between intrathrombotic appearance of HSP27 and HSP70 and thrombus ages in a murine model of deep vein thrombosis[J]. Sci Rep,2023,13(1):22416. doi:10.1038/s41598-023-48987-5 . | 
																													
																						| [27] | NOSAKA M, ISHIDA Y, KUNINAKA Y, et al. Intrathrombotic appearances of AQP-1 and AQP-3 in relation to thrombus age in murine deep vein thrombosis model[J]. Int J Legal Med,2021,135(2):547-553. doi:10.1007/s00414-020-02482-y . | 
																													
																						| [28] | IRNIGER W. Histologic age determination of thrombi and emboli[J]. Virchows Arch Pathol Anat Physiol Klin Med,1963,336(3):220-237. doi:10.1007/BF00957911 . | 
																													
																						| [29] | FINESCHI V, TURILLAZZI E, NERI M, et al. Histological age determination of venous thrombosis: A neglected forensic task in fatal pulmonary thrombo-embolism[J]. Forensic Sci Int,2009,186(1/2/3):22-28. doi:10.1016/j.forsciint.2009.01.006 . | 
																													
																						| [30] | NICKLAS J M, GORDON A E, HENKE P K. Resolution of deep venous thrombosis: Proposed immune paradigms[J]. Int J Mol Sci,2020,21(6):2080. doi:10.3390/ijms21062080 . | 
																													
																						| [31] | NAJEM M Y, COUTURAUD F, LEMARIÉ C A. Cytokine and chemokine regulation of venous thromboembolism[J]. J Thromb Haemost,2020,18(5):1009-1019. doi:10.1111/jth.14759 . | 
																													
																						| [32] | MUKHOPADHYAY S, JOHNSON T A, DURU N, et al. Fibrinolysis and inflammation in venous thrombus resolution[J]. Front Immunol,2019,10:1348. doi:10.3389/fimmu.2019.01348 . | 
																													
																						| [33] | CAMPOS J, BRILL A. By word of mouse: Using animal models in venous thrombosis research[J]. Platelets,2020,31(4):447-454. doi:10.1080/09537104.2019.1678117 . | 
																													
																						| [34] | 张茜,谷田,刘哲宇,等. 小鼠深静脉血栓实验模型的制备[J].江苏大学学报(医学版),2022,32(5):398-402. doi:10.13312/j.issn.1671-7783.y220140 . | 
																													
																						|  | ZHANG X, GU T, LIU Z Y, et al. Preparation of experimental animal model of mouse deep vein thrombosis[J]. Jiangsu Daxue Xuebao (Medicine edition),2022,32(5):398-402. |