Journal of Forensic Medicine ›› 2022, Vol. 38 ›› Issue (2): 258-262.DOI: 10.12116/j.issn.1004-5619.2020.400911
• Review • Previous Articles Next Articles
Xiao-nan MA1,2(), Lu LU3, Yan-tong HUANG1, Chang-qian CEN1, Feng-yuan SU2, Yi SHI1, Zhi-peng CAO1(
)
Received:
2020-09-28
Online:
2022-04-25
Published:
2022-04-28
Contact:
Zhi-peng CAO
CLC Number:
Xiao-nan MA, Lu LU, Yan-tong HUANG, Chang-qian CEN, Feng-yuan SU, Yi SHI, Zhi-peng CAO. Research Progress of Exosomal microRNA in Cardiovascular Disease and Its Forensic Application Prospects[J]. Journal of Forensic Medicine, 2022, 38(2): 258-262.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2020.400911
1 | MARÍ-ALEXANDRE J, BARCELÓ-MOLINA M, SANZ-SÁNCHEZ J, et al. Thickness and an altered miRNA expression in the epicardial adipose tissue is associated with coronary heart disease in sudden death victims[J]. Rev Esp Cardiol (Engl Ed),2019,72(1):30-39. doi:10.1016/j.rec.2017.12.007 . |
2 | LOPEZ-VERRILLI M A, COURT F A. Exosomes: Mediators of communication in eukaryotes[J]. Biol Res,2013,46(1):5-11. doi:10.4067/S0716-97602013000100001 . |
3 | VILLARROYA-BELTRI C, GUTIÉRREZ-VÁZQUEZ C, SÁNCHEZ-CABO F, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs[J]. Nat Commun,2013,4:2980. doi:10.1038/ncomms3980 . |
4 | PEGTEL D M, GOULD S J. Exosomes[J]. Annu Rev Biochem,2019,88:487-514. doi:10.1146/annurev-biochem-013118-111902 . |
5 | GE Q, ZHOU Y, LU J, et al. miRNA in plasma exosome is stable under different storage conditions[J]. Molecules,2014,19(2):1568-1575. doi:10.3390/molecules19021568 . |
6 | LAI R C, ARSLAN F, LEE M M, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res,2010,4(3):214-222. doi:10.1016/j.scr.2009.12.003 . |
7 | XIN H, LI Y, CHOPP M. Exosomes/miRNAs as mediating cell-based therapy of stroke[J]. Front Cell Neurosci,2014,8:377. doi:10.3389/fncel.2014.00377 . |
8 | MONTECALVO A, LARREGINA A T, SHUFESKY W J, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes[J]. Blood,2012,119(3):756-766. doi:10.1182/blood-2011-02-338004 . |
9 | ZHENG B, YIN W N, SUZUKI T, et al. Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis[J]. Mol Ther,2017,25(6):1279-1294. doi:10.1016/j.ymthe.2017.03.031 . |
10 | FANG Y, SHI C, MANDUCHI E, et al. Micro-RNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro[J]. Proc Natl Acad Sci USA,2010,107(30):13450-13455. doi:10.1073/pnas.1002120107 . |
11 | TAN M, YAN H B, LI J N, et al. Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells[J]. Cell Physiol Biochem,2016,38(6):2348-2365. doi:10.1159/000445588 . |
12 | HERGENREIDER E, HEYDT S, TRÉGUER K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs[J]. Nat Cell Biol,2012,14(3):249-256. doi:10.1038/ncb2441 . |
13 | LI K, CHING D, LUK F S, et al. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis[J]. Circ Res,2015,117(1):e1-e11. doi:10.1161/CIRCRESAHA.117.305844 . |
14 | MEILER S, BAUMER Y, TOULMIN E, et al. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2015,35(2):323-331. doi:10.1161/ATVBAHA.114.304878 . |
15 | BOSTJANCIC E, ZIDAR N, STAJER D, et al. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction[J]. Cardiology,2010,115(3):163-169. doi:10.1159/000268088 . |
16 | JANSEN F, YANG X, PROEBSTING S, et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease[J]. J Am Heart Assoc,2014,3(6):e001249. doi:10.1161/JAHA.114.001249 . |
17 | RAMAMOORTHY A, PACANOWSKI M A, BULL J, et al. Racial/ethnic differences in drug disposition and response: Review of recently approved drugs[J]. Clin Pharmacol Ther,2015,97(3):263-273. doi:10.1002/cpt.61 . |
18 | CHENG Y, WANG X, YANG J, et al. A translational study of urine miRNAs in acute myocardial infarction[J]. J Mol Cell Cardiol,2012,53(5):668-676. doi:10.1016/j.yjmcc.2012.08.010 . |
19 | MA T, CHEN Y, CHEN Y, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction[J]. Stem Cells Int,2018,2018:3290372. doi:10.1155/2018/3290372 . |
20 | LUO Q, GUO D, LIU G, et al. Exosomes from miR-126-overexpressing ADSCs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem,2017,44(6):2105-2116. doi:10.1159/000485949 . |
21 | RIBEIRO-RODRIGUES T M, LAUNDOS T L, PEREIRA-CARVALHO R, et al. Exosomes secreted by cardiomyocytes subjected to ischaemia promote car-diac angiogenesis[J]. Cardiovasc Res,2017,113(11):1338-1350. doi:10.1093/cvr/cvx118 . |
22 | SUN X H, WANG X, ZHANG Y, et al. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway[J]. Thromb Res,2019,177:23-32. doi:10.1016/j.thromres.2019.02.002 . |
23 | WANG S, MIN J, YU Y, et al. Differentially expressed miRNAs in circulating exosomes between atrial fibrillation and sinus rhythm[J]. J Thorac Dis,2019,11(10):4337-4348. doi:10.21037/jtd.2019.09.50 . |
24 | MUN D, KIM H, KANG J Y, et al. Expression of miRNAs in circulating exosomes derived from patients with persistent atrial fibrillation[J]. FASEB J,2019,33(5):5979-5989. doi:10.1096/fj.201801758r . |
25 | MCMANUS D D, LIN H, TANRIVERDI K, et al. Relations between circulating microRNAs and atrial fibrillation: Data from the Framingham offspring study[J]. Heart Rhythm,2014,11(4):663-669. doi:10.1016/j.hrthm.2014.01.018 . |
26 | VANDERGRIFF A C, DE ANDRADE J B M, TANG J, et al. Intravenous cardiac stem cell-derived exosomes ameliorate cardiac dysfunction in doxorubicin induced dilated cardiomyopathy[J]. Stem Cells Int,2015,2015:960926. doi:10.1155/2015/960926 . |
27 | WANG X, HUANG W, LIU G, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells[J]. J Mol Cell Cardiol,2014,74:139-150. doi:10.1016/j.yjmcc.2014.05.001 . |
28 | MATSUMOTO S, SAKATA Y, SUNA S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction[J]. Circ Res,2013,113(3):322-326. doi:10.1161/CIRCRESAHA.113.301209 . |
29 | WU T, CHEN Y, DU Y, et al. Serum exosomal miR-92b-5p as a potential biomarker for acute heart failure caused by dilated cardiomyopathy[J]. Cell Physiol Biochem,2018,46(5):1939-1950. doi:10.1159/000489383 . |
30 | BARILE L, LIONETTI V, CERVIO E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction[J]. Cardiovasc Res,2014,103(4):530-541. doi:10.1093/cvr/cvu167 . |
31 | TIAN C, GAO L, ZIMMERMAN M C, et al. Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure[J]. Am J Physiol Heart Circ Physiol,2018,314(5):H928-H939. doi:10.1152/ajpheart.00602.2017 . |
32 | 薛嘉嘉,高亚彪,程志奇,等. MicroRNA在心血管疾病方面的研究现状及应用前景[J].中国法医学杂志,2017,32(5):488-491. doi:10.13618/j.issn.1001-5728.2017.05.012 . |
XUE J J, GAO Y B, CHENG Z Q, et al. The research and application of microRNA in human cardiovascular disease and forensic science[J]. Zhongguo Fayixue Zazhi,2017,32(5):488-491. | |
33 | 何红霞,季安全,韩娜,等. 基于microRNA表达量及判别分析的外周血与月经血鉴别[J].法医学杂志,2020,36(4):514-518,524. doi:10.12116/j.issn.1004-5619.2020.04.016 . |
HE H X, JI A Q, HAN N, et al. Identification of peripheral blood and menstrual blood based on the expression level of microRNAs and discriminant analysis[J]. Fayixue Zazhi,2020,36(4):514-518,524. | |
34 | 杨丹,李洋,孙启凡,等. 分子标志物microRNA在法医学中的研究进展[J].法医学杂志,2020,36(3):374-378. doi:10.12116/j.issn.1004-5619.2020.03.015 . |
YANG D, LI Y, SUN Q F, et al. Research progress on microRNA in forensic medicine as molecular markers[J]. Fayixue Zazhi,2020,36(3):374-378. | |
35 | MA J, PAN H, ZENG Y, et al. Exploration of the R code-based mathematical model for PMI estimation using profiling of RNA degradation in rat brain tissue at different temperatures[J]. Forensic Sci Med Pathol,2015,11(4):530-537. doi:10.1007/s12024-015-9703-7 . |
36 | LI W C, MA K J, LV Y H, et al. Postmortem interval determination using 18S-rRNA and micro-RNA[J]. Sci Justice,2014,54(4):307-310. doi:10.1016/j.scijus.2014.03.001 . |
37 | ZUBAKOV D, BOERSMA A W M, CHOI Y, et al. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation[J]. Int J Legal Med,2010,124(3):217-226. doi:10.1007/s00414-009-0402-3 . |
38 | 袁近松,石蓓. 外泌体microRNAs作为心血管疾病生物标志物的研究进展[J].中国老年学杂志,2019,34(3):754-757. doi:10.3969/j.issn.1005-9202.2019.03.077 . |
YUAN J S, SHI B. Research progress of exosomal microRNAs as biomarkers of cardiovascular diseases[J]. Zhongguo Laonianxue Zazhi,2019,34(3):754-757. | |
39 | COURTS C, GRABMÜLLER M, MADEA B. Dysregulation of heart and brain specific micro-RNA in sudden infant death syndrome[J]. Forensic Sci Int,2013,228(1/2/3):70-74. doi:10.1016/j.forsciint.2013.02.032 . |
40 | BELTRAMI C, BESNIER M, SHANTIKUMAR S, et al. Human pericardial fluid contains exosomes enriched with cardiovascular-expressed microRNAs and promotes therapeutic angiogenesis[J]. Mol Ther,2017,25(3):679-693. doi:10.1016/j.ymthe.2016.12.022 . |
41 | MANNA I, IACCINO E, DATTILO V, et al. Exosome-associated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients[J]. FASEB J,2018,32(8):4241-4246. doi:10.1096/fj.201701533R . |
42 | WU X, SHOWIHEEN S A A, SUN A R, et al. Exosomes extraction and identification[J]. Methods Mol Biol,2019,2054:81-91. doi:10.1007/978-1-4939-9769-5_4 . |
[1] | Wen LI, Hao-zhe LI, Chen CHEN, Wei-xiong CAI. Research Progress and Application Prospect of Facial Micro-Expression Analysis in Forensic Psychiatry [J]. Journal of Forensic Medicine, 2023, 39(5): 493-500. |
[2] | Zhong-hua WANG, Shu-jin LI. Research Progress on Molecular Biology of Human Height Estimation [J]. Journal of Forensic Medicine, 2023, 39(5): 487-492. |
[3] | Lu CHEN, Zhe ZHOU, Sheng-qi WANG. Process of Forensic Medicine in DNA Identification of Aged Human Remains [J]. Journal of Forensic Medicine, 2023, 39(5): 478-486. |
[4] | Yong ZENG, Dong-hua ZOU, Ying FAN, Qing XU, Lu-yang TAO, Yi-jiu CHEN, Zheng-dong LI. Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics [J]. Journal of Forensic Medicine, 2023, 39(5): 471-477. |
[5] | Yu-xin SUN, Xiao-juan GONG, Xiu-li HAO, Yu-xin TIAN, Yi-ming CHEN, Bao ZHANG, Chun-xia YAN. Screening of Genes Co-Associated with Sudden Infant Death Syndrome and Infectious Sudden Death in Infancy and Bioinformatics Analysis of Their Regulatory Networks [J]. Journal of Forensic Medicine, 2023, 39(5): 433-440. |
[6] | Yu YANG, Fan-zhang LEI, Yu-you DONG, Jian-long MA, Qi-qiang SHI, Xue-song YE. Retrospective Analysis of Death Cases of Oral Diphenidol Hydrochloride Poisoning [J]. Journal of Forensic Medicine, 2023, 39(4): 393-398. |
[7] | Fei FAN, Juan WU, Zhen-hua DENG. Application Progress of Objective Audiological Detection Techniques in Forensic Clinical Medicine [J]. Journal of Forensic Medicine, 2023, 39(4): 360-366. |
[8] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[9] | Qin SU, Qian-ling CHEN, Wei-bin WU, Qing-qing XIANG, Cheng-liang YANG, Dong-fang QIAO, Zhi-gang LI. Metabonomics Analysis of Brain Stem Tissue in Rats with Primary Brain Stem Injury Caused Death [J]. Journal of Forensic Medicine, 2023, 39(4): 373-381. |
[10] | Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs [J]. Journal of Forensic Medicine, 2023, 39(4): 406-416. |
[11] | Ran LI, Hong-yu SUN. Methods and Research Hotspots of Forensic Kinship Testing [J]. Journal of Forensic Medicine, 2023, 39(3): 231-239. |
[12] | Xiao-yan MA, Hong-yu SUN, Qing LI. Research Progresses of Tri-Allelic Patterns in Autosomal STR in Forensic DNA Analysis [J]. Journal of Forensic Medicine, 2023, 39(3): 240-246. |
[13] | Xu-dong ZHANG, Yao-ru JIANG, Xin-rui LIANG, Tian TIAN, Qian-qian JIN, Xiao-hong ZHANG, Jie CAO, Qiu-xiang DU, Jun-hong SUN. Postmortem Interval Estimation Using Protein Chip Technology Combined with Multivariate Analysis Methods [J]. Journal of Forensic Medicine, 2023, 39(2): 115-120. |
[14] | Hang CHEN, Jing HU, Zheng QIAO, Hong-xiao DENG, Min LÜ, Wei LIU. Research Progress on Biological Matrix Reference Materials in Forensic Toxicology [J]. Journal of Forensic Medicine, 2023, 39(2): 176-185. |
[15] | Hong-yan GAO, Guang-fu LIU, Jian WU, Peng-yu CHEN. Animal DNA Typing and Its Research Progress in Forensic Medicine [J]. Journal of Forensic Medicine, 2023, 39(2): 161-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||