Journal of Forensic Medicine ›› 2022, Vol. 38 ›› Issue (4): 459-467.DOI: 10.12116/j.issn.1004-5619.2021.410101
• Original Article • Previous Articles Next Articles
Li-ru DONG1(), Jun-bo LIAN1, Shuang-jie HUO1, Dan LUO1, Hu YANG2, Xu-dong SONG1, Xiao-jing ZHANG3, Bin CONG3(
)
Received:
2021-01-04
Online:
2022-08-25
Published:
2022-08-25
Contact:
Bin CONG
CLC Number:
Li-ru DONG, Jun-bo LIAN, Shuang-jie HUO, Dan LUO, Hu YANG, Xu-dong SONG, Xiao-jing ZHANG, Bin CONG. Effects of Chronic Restraint Stress on Apoptosis of Amygdala Cells in Rats[J]. Journal of Forensic Medicine, 2022, 38(4): 459-467.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2021.410101
时间点 | 对照组 | CRS组 |
---|---|---|
0 d | 258.00±7.48 | 262.38±11.89 |
1 d | 273.63±12.13 | 261.88±6.171) |
7 d | 304.75±12.43 | 277.00±16.641) |
14 d | 330.50±15.64 | 303.25±18.991) |
21 d | 361.38±19.32 | 309.62±19.081) |
Tab. 1 Effect of CRS on the body weight of rats
时间点 | 对照组 | CRS组 |
---|---|---|
0 d | 258.00±7.48 | 262.38±11.89 |
1 d | 273.63±12.13 | 261.88±6.171) |
7 d | 304.75±12.43 | 277.00±16.641) |
14 d | 330.50±15.64 | 303.25±18.991) |
21 d | 361.38±19.32 | 309.62±19.081) |
组别 | 总进臂次数 | 总运动距离/mm | 开臂停留时间百分比/% | 进入开臂次数百分比/% |
---|---|---|---|---|
对照 | 14.72±8.84 | 22 852.91±7 578.87 | 10.94±5.64 | 27.98±13.09 |
CRS 1 d | 13.80±8.58 | 20 362.41±2 630.74 | 9.82±3.54 | 16.71±4.76 |
CRS 7 d | 15.50±3.78 | 23 585.06±3 474.36 | 5.10±3.301) | 10.82±2.391) |
CRS 14 d | 16.50±11.20 | 23 095.60±2 808.39 | 4.62±4.661) | 12.23±3.091) |
CRS 21 d | 12.70±6.60 | 19 038.74±5 628.17 | 3.00±1.121) | 12.22±6.451) |
Tab. 2 Elevated plus maze test results of CRS rats
组别 | 总进臂次数 | 总运动距离/mm | 开臂停留时间百分比/% | 进入开臂次数百分比/% |
---|---|---|---|---|
对照 | 14.72±8.84 | 22 852.91±7 578.87 | 10.94±5.64 | 27.98±13.09 |
CRS 1 d | 13.80±8.58 | 20 362.41±2 630.74 | 9.82±3.54 | 16.71±4.76 |
CRS 7 d | 15.50±3.78 | 23 585.06±3 474.36 | 5.10±3.301) | 10.82±2.391) |
CRS 14 d | 16.50±11.20 | 23 095.60±2 808.39 | 4.62±4.661) | 12.23±3.091) |
CRS 21 d | 12.70±6.60 | 19 038.74±5 628.17 | 3.00±1.121) | 12.22±6.451) |
组别 | CRH | ACTH | 皮质醇 |
---|---|---|---|
对照 | 10.57±1.74 | 11.52±0.72 | 2.87±1.79 |
CRS 1 d | 9.83±0.97 | 12.55±1.26 | 3.15±1.82 |
CRS 7 d | 13.67±0.531) | 11.19±1.38 | 3.38±3.01 |
CRS 14 d | 13.61±0.571) | 12.22±0.81 | 6.03±3.001) |
CRS 21 d | 13.87±1.441) | 14.61±0.711) | 8.40±7.421) |
Tab. 3 Effects of CRS on CRH, ACTH,cortisol concentration in rats plasma
组别 | CRH | ACTH | 皮质醇 |
---|---|---|---|
对照 | 10.57±1.74 | 11.52±0.72 | 2.87±1.79 |
CRS 1 d | 9.83±0.97 | 12.55±1.26 | 3.15±1.82 |
CRS 7 d | 13.67±0.531) | 11.19±1.38 | 3.38±3.01 |
CRS 14 d | 13.61±0.571) | 12.22±0.81 | 6.03±3.001) |
CRS 21 d | 13.87±1.441) | 14.61±0.711) | 8.40±7.421) |
组别 | 肾上腺质量 |
---|---|
对照 | 0.022 0±0.005 8 |
CRS 1 d | 0.023 6±0.003 9 |
CRS 7 d | 0.033 2±0.006 91)2) |
CRS 14 d | 0.035 6±0.005 41)2) |
CRS 21 d | 0.049 6±0.012 21) |
Tab. 4 Effect of CRS on the adrenal weight of rats
组别 | 肾上腺质量 |
---|---|
对照 | 0.022 0±0.005 8 |
CRS 1 d | 0.023 6±0.003 9 |
CRS 7 d | 0.033 2±0.006 91)2) |
CRS 14 d | 0.035 6±0.005 41)2) |
CRS 21 d | 0.049 6±0.012 21) |
组别 | GR/分 | GFAP/% |
---|---|---|
对照 | 3.40±0.55 | 49.00±5.29 |
CRS 1 d | 3.40±1.52 | 47.13±4.88 |
CRS 7 d | 4.80±1.10 | 31.27±5.121) |
CRS 14 d | 8.20±1.301) | 22.79±6.171) |
CRS 21 d | 9.20±1.641) | 17.33±5.031) |
Tab. 6 The expression of GR and GFAP in rats
组别 | GR/分 | GFAP/% |
---|---|---|
对照 | 3.40±0.55 | 49.00±5.29 |
CRS 1 d | 3.40±1.52 | 47.13±4.88 |
CRS 7 d | 4.80±1.10 | 31.27±5.121) |
CRS 14 d | 8.20±1.301) | 22.79±6.171) |
CRS 21 d | 9.20±1.641) | 17.33±5.031) |
1 | ROSS R A, FOSTER S L, IONESCU D F. The role of chronic stress in anxious depression[J]. Chronic Stress (Thousand Oaks),2017,1:2470547016689472. doi:10.1177/2470547016689472 . |
2 | TRAN L, GREENWOOD-VAN MEERVELD B. Altered expression of glucocorticoid receptor and corticotropin-releasing factor in the central amygdala in response to elevated corticosterone[J]. Behav Brain Res,2012,234(2):380-385. doi:10.1016/j.bbr.2012.07.010 . |
3 | HERCULANO-HOUZEL S. The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution[J]. Glia,2014,62(9):1377-1391. doi:10.1002/glia.22683 . |
4 | YU S, YANG S, HOLSBOER F, et al. Glucocorticoid regulation of astrocytic fate and function[J]. PLoS One,2011,6(7):e22419. doi:10.1371/journal.pone.0022419 . |
5 | CHEN X, LU M, HE X, et al. TRPC3/6/7 knockdown protects the brain from cerebral ischemia injury via astrocyte apoptosis inhibition and effects on NF-кB translocation[J]. Mol Neurobiol,2017,54(10):7555-7566. doi:10.1007/s12035-016-0227-2 . |
6 | BOWLEY M P, DREVETS W C, ÖNGÜR D, et al. Low glial numbers in the amygdala in major depressive disorder[J]. Biol Psychiatry,2002,52(5):404-412. doi:10.1016/s0006-3223(02)01404-x . |
7 | CHIBA S, NUMAKAWA T, NINOMIYA M, et al. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex[J]. Prog Neuropsychopharmacol Biol Psychiatry,2012,39(1):112-119. doi:10.1016/j.pnpbp. 2012.05.018 . |
8 | ZHANG W, ROSENKRANZ J A. Repeated restraint stress enhances cue-elicited conditioned freezing and impairs acquisition of extinction in an age-dependent manner[J]. Behav Brain Res,2013,248:12-24. doi:10.1016/j.bbr.2013.03.028 . |
9 | WANG S X, CHEN J X, YUE G X, et al. Xiaoyaosan decoction regulates changes in neuropeptide Y and leptin receptor in the rat arcuate nucleus after chronic immobilization stress[J]. Evid Based Complement Alternat Med,2012,2012:381278. doi:10.1155/2012/381278 . |
10 | PAXINOS G, WATSON C. 大鼠脑立体定位图谱[M]. 3版. 诸葛启钏,译. 北京:人民卫生出版社,2005. |
PAXINOS G, WATSONC. The rat brain in stereotaxic coordinates[M]. 3rd ed. ZHUGE Q C, transl. Beijing: People’s Medical Publishing House,2005. | |
11 | 赵媛媛,于静,杨琳,等. 柴胡安心胶囊对利血平致大鼠抑郁样行为及皮质酮的影响[J].中国临床药理学杂志,2021,37(22):3131-3134,3152. doi:10.13699/j.cnki.1001-6821.2021.22.028 . |
ZHAO Y Y, YU J, YANG L, et al. Effect of Chaihu Anxin capsules on depression-like behavior and corticosterone in reserpine rats[J]. Zhongguo Linchuang Yaolixue Zazhi,2021,37(22):3131-3134,3152. | |
12 | 申传安,柴家科,姚咏明,等. 糖皮质激素对大鼠骨骼肌蛋白分解代谢的影响及其机制探讨[J].中国危重病急救医学,2002,14(7):428-431. doi:10.3760/j.issn:1003-0603.2002.07.013 . |
SHEN C A, CHAI J K, YAO Y M, et al. Study on effects of dexamethasone on skeletal muscle proteolysis and its mechanism in rats[J]. Zhongguo Weizhongbing Jijiu Yixue,2002,14(7):428-431. | |
13 | 李继承,曾园山. 组织学与胚胎学[M].9版.北京:人民卫生出版社,2018. |
LI J C, ZENG Y S. Histology and embryology[M]. 9th ed. Beijing: People’s Medical Publishing House,2018. | |
14 | CHEN J, WANG Z Z, ZUO W, et al. Effects of chronic mild stress on behavioral and neurobiological parameters -- Role of glucocorticoid[J]. Horm Behav,2016,78:150-159. doi:10.1016/j.yhbeh.2015.11.006 . |
15 | DE KLOET E R, JOËLS M, HOLSBOER F. Stress and the brain: From adaptation to disease[J]. Nat Rev Neurosci,2005,6(6):463-475. doi:10.1038/nrn |
1683. | |
16 | LIU W Z, ZHANG W H, ZHENG Z H, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety[J]. Nat Commun,2020,11(1):2221. doi:10.1038/s41467-020-15 |
920-7. | |
17 | SOUSA N, ALMEIDA O F X. Disconnection and reconnection: The morphological basis of (mal)adaptation to stress[J]. Trends Neurosci,2012,35(12):742-751. doi:10.1016/j.tins.2012.08.006 . |
18 | GRILLO C A, RISHER M, MACHT V A, et al. Repeated restraint stress-induced atrophy of glutamatergic pyramidal neurons and decreases in glutamatergic efflux in the rat amygdala are prevented by the antidepressant agomelatine[J]. Neuroscience,2015,284:430-443. doi:10.1016/j.neuroscience.2014.09.047 . |
19 | SEO J S, WEI J, QIN L, et al. Cellular and molecular basis for stress-induced depression[J]. Mol Psychiatry,2017,22(10):1440-1447. doi:10.1038/mp. 2016.118 . |
20 | WULSIN A C, HERMAN J P, SOLOMON M B. Mifepristone decreases depression-like behavior and modulates neuroendocrine and central hypothalamic-pituitary-adrenocortical axis responsiveness to stress[J]. Psychoneuroendocrinology,2010,35(7):1100-1112. doi:10.1016/j.psyneuen.2010.01.011 . |
21 | LUPIEN S J, MAHEU F, TU M, et al. The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition[J]. Brain Cogn,2007,65(3):209-237. doi:10 . |
1016/j.bandc.2007.02.007. | |
22 | MONAI H, HIRASE H. Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression[J]. Neurosci Res,2018,126:15-21. doi:10 . |
1016/j.neures.2017.08.012. | |
23 | SOLOMON M B, FURAY A R, JONES K, et al. Deletion of forebrain glucocorticoid receptors impairs neuroendocrine stress responses and induces depression-like behavior in males but not females[J]. Neuroscience,2012,203:135-143. doi:10.1016/j.neuro science.2011.12.014 . |
24 | MENDOZA C, PEREZ-URRUTIA N, ALVAREZ-RICARTES N, et al. Cotinine plus krill oil decreased depressive behavior, and increased astrocytes survival in the hippocampus of mice subjected to restraint stress[J]. Front Neurosci,2018,12:952. doi:10.3389/fnins.2018.00952 . |
25 | COBB J A, O’NEILL K, MILNER J, et al. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder[J]. Neuroscience,2016,316:209-220. doi:10.1016/j.neuro science.2015.12.044 . |
26 | LONGONI A, BELLAVER B, BOBERMIN L D, et al. Homocysteine induces glial reactivity in adult rat astrocyte cultures[J]. Mol Neurobiol,2018,55(3):1966-1976. doi:10.1007/s12035-017-0463-0 . |
27 | RAJKOWSKA G, STOCKMEIER C A. Astrocyte pathology in major depressive disorder: Insights from human postmortem brain tissue[J]. Curr Drug Targets,2013,14(11):1225-1236. doi:10.2174/1389450111314 |
9990156. | |
28 | VERKHRATSKY A, BUTT A. Glial physiology and pathophysiology[M]. Chichester: John Wiley & Sons, Ltd,2013:453-504. |
[1] | Wei FANG, Ji-long ZHENG, Yi-ming FU, Yi LIU. Research Progress of Using Canine Olfactory Search for Human Remains [J]. Journal of Forensic Medicine, 2024, 40(3): 269-275. |
[2] | Nian-nian CHEN, Jiao-fang YU, Peng WU, Li LUO, Ya-qin BAI, Li-kai WANG, Xiao-qian LI, Zhan-peng LI, Cai-rong GAO, Xiang-jie GUO. Urine Metabolites Changes in Acute Myocardial Infarction Rats via Metabolomic Analysis [J]. Journal of Forensic Medicine, 2024, 40(3): 227-236. |
[3] | Shang-heng CHEN, Sheng-zhong DONG, Zhi-min WANG, Guang-hui HONG, Xing YE, Zi-jie LIN, Jun-yi LIN, Jie-qing JIANG, Shou-yu WANG, Han-cheng LIN, Yi-wen SHEN. Biomarkers Screening and Mechanisms Analysis of the Restraint Stress-Induced Myocardial Injury in Hyperlipidemia ApoE-/- Mice [J]. Journal of Forensic Medicine, 2024, 40(2): 172-178. |
[4] | Juan-juan WU, Jun-jie HUANG, Yu ZHANG, Jia-ying ZHUO, Gang CHEN, Shu-han YANG, Yun-qi ZHAO, Yan-yan FAN. Time-Dependent Sequential Changes of IL-10 and TGF-β1 in Mice with Deep Vein Thrombosis [J]. Journal of Forensic Medicine, 2024, 40(2): 179-185. |
[5] | Yun-hong XING, Yang LI, Wen-zheng WANG, Liang-liang WANG, Le-le SUN, Qiu-xiang DU, Jie CAO, Guang-long HE, Jun-hong SUN. Pathological Characteristics and Classification of Unstable Coronary Atherosclerotic Plaques [J]. Journal of Forensic Medicine, 2024, 40(1): 59-63. |
[6] | Wei-guang YU, Qiang HE, Zheng-di WANG, Cheng-jun TIAN, Jin-kai WANG, Qian ZHENG, Fei REN, Chao ZHANG, You-mei WANG, Peng XU, Zhi-wen WEI, Ke-ming YUN. Toxicokinetics of MDMA and Its Metabolite MDA in Rats [J]. Journal of Forensic Medicine, 2024, 40(1): 37-42. |
[7] | Tian TIAN, Xin-biao LIAO, Fu ZHANG, Kai-fei DENG, Ji ZHANG, Ping HUANG, Yi-jiu CHEN, Jian-hua ZHANG. Forensic Pathological Diagnosis of Acute and Old Myocardial Infarction Using Fourier Transform Infrared Spectroscopy [J]. Journal of Forensic Medicine, 2023, 39(6): 535-541. |
[8] | Bin YANG, Lu-yao XU, Ling-yue LI, Dong-fang QIAO, Si-hao DU, Xia YUE, Hui-jun WANG. Pathological Changes and Cause of Death Associated with the Global Novel Coronavirus Disease (COVID-19) [J]. Journal of Forensic Medicine, 2023, 39(6): 586-595. |
[9] | Xin ZHAO, Zhi-ming CHEN, Wen-yun LIU, Bo WANG, Hong-yang LI, Li-yao YANG, Yan TENG, Li-jun WANG, Yan-bin GAO, Wei-long CHEN, Lei ZHANG. Application of Targeted Coronary Angiography in the Diagnosis of Sudden Cardiac Death [J]. Journal of Forensic Medicine, 2023, 39(6): 542-548. |
[10] | Yong ZENG, Dong-hua ZOU, Ying FAN, Qing XU, Lu-yang TAO, Yi-jiu CHEN, Zheng-dong LI. Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics [J]. Journal of Forensic Medicine, 2023, 39(5): 471-477. |
[11] | Yu-xin SUN, Xiao-juan GONG, Xiu-li HAO, Yu-xin TIAN, Yi-ming CHEN, Bao ZHANG, Chun-xia YAN. Screening of Genes Co-Associated with Sudden Infant Death Syndrome and Infectious Sudden Death in Infancy and Bioinformatics Analysis of Their Regulatory Networks [J]. Journal of Forensic Medicine, 2023, 39(5): 433-440. |
[12] | Yu YANG, Fan-zhang LEI, Yu-you DONG, Jian-long MA, Qi-qiang SHI, Xue-song YE. Retrospective Analysis of Death Cases of Oral Diphenidol Hydrochloride Poisoning [J]. Journal of Forensic Medicine, 2023, 39(4): 393-398. |
[13] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[14] | Qin SU, Qian-ling CHEN, Wei-bin WU, Qing-qing XIANG, Cheng-liang YANG, Dong-fang QIAO, Zhi-gang LI. Metabonomics Analysis of Brain Stem Tissue in Rats with Primary Brain Stem Injury Caused Death [J]. Journal of Forensic Medicine, 2023, 39(4): 373-381. |
[15] | Xu-dong ZHANG, Yao-ru JIANG, Xin-rui LIANG, Tian TIAN, Qian-qian JIN, Xiao-hong ZHANG, Jie CAO, Qiu-xiang DU, Jun-hong SUN. Postmortem Interval Estimation Using Protein Chip Technology Combined with Multivariate Analysis Methods [J]. Journal of Forensic Medicine, 2023, 39(2): 115-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||