Journal of Forensic Medicine ›› 2022, Vol. 38 ›› Issue (2): 223-230.DOI: 10.12116/j.issn.1004-5619.2021.410923
• Original Article • Previous Articles Next Articles
Qi-fan YANG1,2(), Xue-yang SUN1,2, Yan-bin WANG3, Zhi-ling TIAN2, He-wen DONG2, Lei WAN2, Dong-hua ZOU2, Xiao-tian YU2, Guang-zheng ZHANG1(
), Ning-guo LIU2(
)
Received:
2021-09-26
Online:
2022-04-25
Published:
2022-04-28
Contact:
Guang-zheng ZHANG,Ning-guo LIU
CLC Number:
Qi-fan YANG, Xue-yang SUN, Yan-bin WANG, Zhi-ling TIAN, He-wen DONG, Lei WAN, Dong-hua ZOU, Xiao-tian YU, Guang-zheng ZHANG, Ning-guo LIU. Automatic Identification of Brain Injury Mechanism Based on Deep Learning[J]. Journal of Forensic Medicine, 2022, 38(2): 223-230.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2021.410923
组别 | 性别 | 年龄/岁 | 损伤类型 | 合计 | |||||
---|---|---|---|---|---|---|---|---|---|
男性 | 女性 | 最大 | 最小 | 加速性损伤 | 减速性损伤 | 正常颅脑 | |||
合计 | 251 | 69 | 97 | 7 | 43.53±16.74 | 109 | 81 | 130 | 320 |
训练验证集 | 179 | 45 | 97 | 7 | 43.57±16.68 | 80 | 63 | 81 | 224 |
测试集 | 72 | 24 | 84 | 11 | 44.35±16.70 | 29 | 18 | 49 | 96 |
Tab. 1 Distribution of training validation dataset and testing dataset
组别 | 性别 | 年龄/岁 | 损伤类型 | 合计 | |||||
---|---|---|---|---|---|---|---|---|---|
男性 | 女性 | 最大 | 最小 | 加速性损伤 | 减速性损伤 | 正常颅脑 | |||
合计 | 251 | 69 | 97 | 7 | 43.53±16.74 | 109 | 81 | 130 | 320 |
训练验证集 | 179 | 45 | 97 | 7 | 43.57±16.68 | 80 | 63 | 81 | 224 |
测试集 | 72 | 24 | 84 | 11 | 44.35±16.70 | 29 | 18 | 49 | 96 |
类别 | 精确率 | 召回率 | F1值 |
---|---|---|---|
加速性损伤 | 84.38 | 90.00 | 87.10 |
正常颅脑 | 88.57 | 89.86 | 89.21 |
减速性损伤 | 86.67 | 72.22 | 78.79 |
Tab. 2 The classification results of Inception_v3 in the testing dataset
类别 | 精确率 | 召回率 | F1值 |
---|---|---|---|
加速性损伤 | 84.38 | 90.00 | 87.10 |
正常颅脑 | 88.57 | 89.86 | 89.21 |
减速性损伤 | 86.67 | 72.22 | 78.79 |
1 | 朱传红,李道泉,王海生,等. 致伤方式、致伤工具的法医学复核鉴定分析12例[J].刑事技术,2001(6):54-56. doi:10.16467/j.1008-3650.2001.06.037 . |
ZHU C H, LI D Q, WANG H S, et al. Analysis of 12 cases of injury methods and injury tools for forensic medicine review and identification[J]. Xingshi Jishu,2001(6):54-56. | |
2 | LANGLOIS J A, RUTLAND-BROWN W, WALD M M. The epidemiology and impact of traumatic brain injury[J]. J Head Trauma Rehabil,2006,21(5):375-378. doi:10.1097/00001199-200609000-00001 . |
3 | 郑剑. CT技术在法医学致伤方式鉴定中的应用[D].上海:复旦大学,2010. |
ZHENG J. The application of computed tomography(CT) in forensic appraisal of injury manner[D]. Shanghai: Fudan University,2010. | |
4 | 孙晔,胡宇祺,皮之云,等. 虚拟解剖在法医实践中的发展与应用[J].现代医用影像学,2021,30(8):1427-1431. |
SUN Y, HU Y Q, PI Z Y, et al. Development and application of virtual anatomy in forensic practice[J]. Xiandai Yiyong Yingxiangxue,2021,30(8):1427-1431. | |
5 | 李伟,齐麟. 虚拟解剖技术在法医学鉴定中的研究进展[J].广东公安科技,2020,28(3):38-39,50. |
LI W, QI L. Research progress of virtual anatomy technique in forensic identification[J]. Guangdong Gongan Keji,2020,28(3):38-39,50. | |
6 | 王宇聪,朱海标,刘冉,等. 虚拟解剖在法医病理学领域的应用现状[J].中国法医学杂志,2020,35(4):360-368. doi:10.13618/j.issn.1001-5728.2020.04.004 . |
WANG Y C, ZHU H B, LIU R, et al. Application of virtual anatomy in forensic pathology[J]. Zhongguo Fayixue Zazhi,2020,35(4):360-368. | |
7 | HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Comput,2006,18(7):1527-1554. doi:10.1162/neco.2006.18.7.1527 . |
8 | 孙雪瑞. 基于深度学习的病理图像细胞核分割[D].成都:电子科技大学,2020. |
SUN X R. Nuclear segmentation of pathological image based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China,2020. | |
9 | ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118. doi:10.1038/nature21056 . |
10 | KERMANY D S, GOLDBAUM M, CAI W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell,2018,172(5):1122-1131.e9. doi:10.1016/j.cell.2018.02.010 . |
11 | GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA,2016,316(22):2402-2410. doi:10.1001/jama.2016.17216 . |
12 | SPAMPINATO C, PALAZZO S, GIORDANO D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Med Image Anal,2017,36:41-51. doi:10.1016/j.media.2016.10.010 . |
13 | 胡婷鸿,火忠,刘太昂,等. 基于深度学习实现维吾尔族青少年左手腕关节骨龄自动化评估[J].法医学杂志,2018,34(1):27-32. doi:10.3969/j.issn.1004-5619.2018.01.006 . |
HU T H, HUO Z, LIU T A, et al. Automated assessment for bone age of left wrist joint in Uyghur teenagers by deep learning[J]. Fayixue Zazhi,2018,34(1):27-32. | |
14 | LI Y, HUANG Z, DONG X, et al. Forensic age estimation for pelvic X-ray images using deep learning[J]. Eur Radiol,2019,29(5):2322-2329. doi:10.1007/s00330-018-5791-6 . |
15 | 彭丽琴,万雷,汪茂文,等. 运用3种卷积神经网络模型对青少年骨盆骨龄评估的比较[J].法医学杂志,2020,36(5):622-630. doi:10.12116/j.issn.1004-5619.2020.05.004 . |
PENG L Q, WAN L, WANG M W, et al. Comparison of three CNN models applied in bone age assessment of pelvic radiographs of adolescents[J]. Fayixue Zazhi,2020,36(5):622-630. | |
16 | CAO Y, MA Y, VIEIRA D N, et al. A potential method for sex estimation of human skeletons using deep learning and three-dimensional surface scanning[J]. Int J Legal Med,2021,135(6):2409-2421. doi:10.1007/s00414-021-02675-z . |
17 | 盖荣丽,蔡建荣,王诗宇,等. 卷积神经网络在图像识别中的应用研究综述[J].小型微型计算机系统,2021,42(9):1980-1984. doi:10.3969/j.issn.1000-1220.2021.09.030 . |
GAI R L, CAI J R, WANG S Y, et al. Research review on image recognition based on deep learning[J]. Xiaoxing Weixing Jisuanji Xitong,2021,42(9):1980-1984. | |
18 | HU H, YANG Y. A combined GLQP and DBN-DRF for face recognition in unconstrained environments[C]// Science and Engineering Research Center. Proceedings of the 2017 2nd International Conference on Control, Automation and Artificial Intelligence (CAAI 2017), Paris, France: Atlantis Press,2017. |
19 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM,2017,60(6):84-90. doi:10.1145/3065386 . |
20 | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans Pattern Anal Mach Intell,2015,37(9):1904-1916. doi:10.1109/TPAMI.2015.2389824 . |
21 | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Trans Pattern Anal Mach Intell,2020,42(8):2011-2023. doi:10.1109/TPAMI.2019.2913372 . |
22 | MONTEIRO M, NEWCOMBE V F J, MATHIEU F, et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: An algorithm development and multicentre validation study[J]. Lancet Digit Health,2020,2(6):e314-e322. doi:10.1016/S2589-7500(20)30085-6 . |
23 | DHAR R, FALCONE G J, CHEN Y, et al. Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage[J]. Stroke,2020,51(2):648-651. doi:10.1161/STROKEAHA.119.027657 . |
24 | FARZANEH N, WILLIAMSON C A, JIANG C, et al. Automated segmentation and severity analysis of subdural hematoma for patients with traumatic brain injuries[J]. Diagnostics (Basel),2020,10(10):773. doi:10.3390/diagnostics10100773 . |
25 | YAO H, WILLIAMSON C, GRYAK J, et al. Automated hematoma segmentation and outcome prediction for patients with traumatic brain injury[J]. Artif Intell Med,2020,107:101910. doi:10.1016/j.artmed.2020.101910 . |
26 | LIU S, UTRIAINEN D, CHAI C, et al. Cerebral microbleed detection using susceptibility weighted imaging and deep learning[J]. Neuroimage,2019,198:271-282. doi:10.1016/j.neuroimage.2019.05.046 . |
27 | CHILAMKURTHY S, GHOSH R, TANAMALA S, et al. Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study[J]. Lancet,2018,392(10162):2388-2396. doi:10.1016/S0140-6736(18)31645-3 . |
28 | AOE J, FUKUMA R, YANAGISAWA T, et al. Automatic diagnosis of neurological diseases using MEG signals with a deep neural network[J]. Sci Rep,2019,9(1):5057. doi:10.1038/s41598-019-41500-x . |
29 | SARRAF S, TOFIGHI G. Classification of Alzheimer’s disease using fMRI data and deep learning convolutional neural networks[J]. arXiv,2016. arXiv:. |
30 | GARLAND J, ONDRUSCHKA B, STABLES S, et al. Identifying fatal head injuries on postmortem computed tomography using convolutional neural network/deep learning: A feasibility study[J]. J Forensic Sci,2020,65(6):2019-2022. doi:10.1111/1556-4029.14502 . |
[1] | Hong-xia HAO, Jie-min CHEN, Rong-rong WANG, Xiao-ying YU, Meng WANG, Zhi-lu ZHOU, Yan-liang SHENG, Wen-tao XIA. The Value of VR-PVEP in Objective Evaluation of Monocular Refractive Visual Impairment [J]. Journal of Forensic Medicine, 2023, 39(4): 382-387. |
[2] | Jie BAI, Jing SUN, Xiao-guang CHENG, Fan LIU, Hua LIU, Xu WANG. Construction and Application of Rib Fracture Diagnosis Model Based on YOLOv3 Algorithm [J]. Journal of Forensic Medicine, 2023, 39(4): 343-349. |
[3] | Fei FAN, Juan WU, Zhen-hua DENG. Application Progress of Objective Audiological Detection Techniques in Forensic Clinical Medicine [J]. Journal of Forensic Medicine, 2023, 39(4): 360-366. |
[4] | Jian XIANG, Xu WANG, Li-li YU, Kang-jia JIN, Ying-kai YANG. Objective Assessment of Visual Field Defects Caused by Optic Chiasm and Its Posterior Visual Pathway Injury [J]. Journal of Forensic Medicine, 2023, 39(4): 350-359. |
[5] | Zhang-ming GAO, Jing-yu SHI, Hao ZENG, Xue-jun ZHANG. Rapid Determination of Bucinnazine in Blood by UPLC-MS/MS [J]. Journal of Forensic Medicine, 2023, 39(4): 388-392. |
[6] | Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs [J]. Journal of Forensic Medicine, 2023, 39(4): 406-416. |
[7] | Xu WANG. Legal Theories, Disability Models and Principles of Disability Assessment [J]. Journal of Forensic Medicine, 2023, 39(4): 329-336. |
[8] | Hao-yang WANG, Jian WU, Qian ZHANG, Xin-feng MIN, Xiu-yan LIU, Yin-long GUO. Structural Analysis and Characterization of 4-F-α-PVP Analog 4-F-3-Methyl-α- PVP Hydrochloride [J]. Journal of Forensic Medicine, 2023, 39(2): 144-150. |
[9] | Hang CHEN, Jing HU, Zheng QIAO, Hong-xiao DENG, Min LÜ, Wei LIU. Research Progress on Biological Matrix Reference Materials in Forensic Toxicology [J]. Journal of Forensic Medicine, 2023, 39(2): 176-185. |
[10] | Jiao-jiao JI, Duo-qi XU, Ping XIANG, Hui YAN, Min SHEN. Analysis of Forty-Two Psychoactive Substances in a Single Hair by Micro-Segmental Technique [J]. Journal of Forensic Medicine, 2023, 39(2): 151-160. |
[11] | Yong-gang MA, Yong-jie CAO, Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG, Ji ZHANG. Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning [J]. Journal of Forensic Medicine, 2023, 39(2): 129-136. |
[12] | Zhong-ping CHENG, Yan-fei LIU, Xing-min XU, Yao-nan MO. Progress in the Application of Magnetic Nanoparticles in Forensic Trace Analysis [J]. Journal of Forensic Medicine, 2023, 39(2): 168-175. |
[13] | Jiang-wei YAN, Jun-hong SUN, Hong-xing WANG, Zhi-wen WEI, Xiang-jie GUO, Ji LI, Cai-rong GAO, Geng-qian ZHANG, Xin-hua LIANG, Qiang-qiang ZHANG, Hong-wei WANG, Si-jin LI, Ying-yuan WANG, Ke-ming YUN. Exploration and Practice of the “One Combination, Two Highlights, Three Combinations, Four in One” Innovative Talents Training Mode in Forensic Medicine [J]. Journal of Forensic Medicine, 2023, 39(2): 193-199. |
[14] | Dong GAO, Pei-pei ZHUO, Dong TIAN, Dan RAN, Qing XIA, Wen-tao XIA. Correlation between Elbow Flexor Muscle Strength and Needle Electromyography Parameters after Musculocutaneous Nerve Injury [J]. Journal of Forensic Medicine, 2023, 39(2): 137-143. |
[15] | Hong-xia HAO, Ya-hui WANG, Zhi-lu ZHOU, Tai-ang LIU, Jin CHEN, Yu-heng HE, Lei WAN, Wen-tao XIA. Research Progress of Age Estimation in the Living by Knee Joint MRI [J]. Journal of Forensic Medicine, 2023, 39(1): 66-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||