法医学杂志 ›› 2021, Vol. 37 ›› Issue (6): 841-846.DOI: 10.12116/j.issn.1004-5619.2020.400709
程剑1,2(), 索胧胧1,3, 王林林1, 赵锐1, 官大威1(
)
收稿日期:
2020-07-20
发布日期:
2021-12-25
出版日期:
2021-12-28
通讯作者:
官大威
作者简介:
官大威,男,博士,教授,博士研究生导师,主要从事器官组织损伤愈合机制及钝力性心脏外伤研究,法医病理学教学以及鉴定;E-mail:dwguan@mail.cmu.edu.cn基金资助:
Jian CHENG1,2(), Long-long SUO1,3, Lin-lin WANG1, Rui ZHAO1, Da-wei GUAN1(
)
Received:
2020-07-20
Online:
2021-12-25
Published:
2021-12-28
Contact:
Da-wei GUAN
摘要:
损伤时间推断是法医学实践中的主要工作之一,但准确推断损伤时间一直是国内外尚未解决的难题和研究热点。研究证明,微RNA(microRNA,miRNA)参与皮肤损伤修复的整个过程,由于miRNA的特性优势,有望成为推断皮肤损伤时间的生物学指标。本文综述了miRNA的基本生物学功能、特性、皮肤损伤时间推断研究进展及其存在的主要问题,展望了miRNA在损伤时间推断中的应用和研究前景。
中图分类号:
程剑, 索胧胧, 王林林, 赵锐, 官大威. MicroRNA在皮肤损伤时间推断中的应用前景[J]. 法医学杂志, 2021, 37(6): 841-846.
Jian CHENG, Long-long SUO, Lin-lin WANG, Rui ZHAO, Da-wei GUAN. Application Prospect of MicroRNA in Skin Wound Age Estimation[J]. Journal of Forensic Medicine, 2021, 37(6): 841-846.
1 | GRELLNER W, MADEA B. Demands on scientific studies: Vitality of wounds and wound age estimation[J]. Forensic Sci Int,2007,165(2/3):150-154. doi:10.1016/j.forsciint.2006.05.029. |
2 | 官大威,赵锐,王林林. 法医学损伤时间推断:过去、现在与未来[J].法医学杂志,2019,35(2):131-135. doi:10.12116/j.issn.1004-5619.2019.02.001. |
GUAN D W, ZHAO R, WANG L L. Forensic injury timing inference: Past, present and future[J]. Fayixue Zazhi,2019,35(2):131-135. | |
3 | CECCHI R. Estimating wound age: Looking into the future[J]. Int J Legal Med,2010,124(6):523-536. doi:10.1007/s00414-010-0505-x. |
4 | YAGI Y, MURASE T, KAGAWA S, et al. Immunohistochemical detection of CD14 and combined assessment with CD32B and CD68 for wound age estimation[J]. Forensic Sci Int,2016,262:113-120. doi:10.1016/j.forsciint.2016.02.031. |
5 | DU Q, LI N, DANG L, et al.Temporal expression of wound healing-related genes inform wound age estimation in rats after a skeletal muscle contusion: A multivariate statistical model analysis[J]. Int J Legal Med,2020,134(1):273-282. doi:10.1007/s00414-018-01990-2. |
6 | MULHOLLAND E J, DUNNE N, MCCARTHY H O. MicroRNA as therapeutic targets for chronic wound healing[J]. Mol Ther Nucleic Acids,2017,8:46-55. doi:10.1016/j.omtn.2017.06.003. |
7 | MENG Z, ZHOU D, GAO Y, et al. miRNA delivery for skin wound healing[J]. Adv Drug Deliver Rev,2018,129:308-318. doi:10.1016/j.addr.2017.12.011. |
8 | KONDO T, ISHIDA Y. Molecular pathology of wound healing[J]. Forensic Sci Int,2010,203(1/2/3):93-98. doi:10.1016/j.forsciint.2010.07.004. |
9 | LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854. doi:10.1016/0092-8674(93)90529-Y. |
10 | REINHART B J, SLACK F J, BASSON M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403(6772):901-906. doi:10.1038/35002607. |
11 | LAGOS-QUINTANA M, RAUHUT R,LENDECKEL W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science,2001,294(5543):853-858. doi:10.1126/science.1064921. |
12 | WANG X. Composition of seed sequence is a major determinant of microRNA targeting patterns[J]. Bioinformatics (Oxford, England),2014,30(10):1377-1383. doi:10.1093/bioinformatics/btu045. |
13 | BANERJEE J, CHAN Y C, SEN C K. Micro-RNAs in skin and wound healing[J]. Physiol Genomics,2011,43(10):543-556. doi:10.1152/physiolgenomics.00157.2010. |
14 | ØROM U A, NIELSEN F C, LUND A H. Micro-RNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation[J]. Mol Cell,2008,30(4):460-471. doi:10.1016/j.molcel.2008.05.001. |
15 | TAY Y, ZHANG J, THOMSON A M, et al. Micro-RNAs to Nanog,Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation[J]. Nature,2008,455(7216):1124-1128. doi:10.1038/nature07299. |
16 | BARTEL D P. MicroRNAs: Genomics, biogenesis, mechanism, and function[J]. Cell,2004,116(2):281-297. doi:10.1016/S0092-8674(04)00045-5. |
17 | YEKTA S, SHIH I, BARTEL D P. MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science,2004,304(5670):594-596. doi:10.1126/science.1097434. |
18 | TANG R, LI L, ZHU D, et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: Evidence for a microRNA hierarchy system[J]. Cell Res,2012,22(3):504-515. doi:10.1038/cr.2011.137. |
19 | KOZOMARA A, BIRGAOANU M, GRIFFITHS-JONES S. miRBase: From microRNA sequences to function[J]. Nucleic Acids Res,2019,47(D1):D155-D162. doi:10.1093/nar/gky1141. |
20 | GEBERT L F R, MACRAE I J. Regulation of micro-RNA function in animals[J]. Nat Rev Mol Cell Bio,2019,20(1):21-37. doi:10.1038/s41580-018-0045-7. |
21 | AMBROS V. The functions of animal microRNAs[J]. Nature,2004,431(7006):350-355. doi:10.1038/nature02871. |
22 | BARRIENTOS S, STOJADINOVIC O, GOLINKO M S, et al. Growth factors and cytokines in wound healing[J]. Wound Repair Regen,2008,16(5):585-601. doi:10.1111/j.1524-475X.2008.00410.x. |
23 | MAHDAVIAN DELAVARY B, VEER W M VAN DER, EGMOND M VAN, et al. Macrophages in skin injury and repair[J]. Immunobiology,2011,216(7):753-762. doi:10.1016/j.imbio.2011.01.001. |
24 | SHAH J M Y, OMAR E, PAI D R, et al. Cellular events and biomarkers of wound healing[J]. Indian J Plast Surg,2012,45(2):220-228. doi:10.4103/0970-0358.101282. |
25 | WERNER S, PETERS K G, LONGAKER M T, et al. Large induction of keratinocyte growth factor expression in the dermis during wound healing[J]. Proc Natl Acad Sci USA,1992,89(15):6896-6900. doi:10.1073/pnas.89.15.6896. |
26 | PILCHER B K, DUMIN J A, SUDBECK B D, et al. The activity of collagenase-1 is required for keratinocyte migration on a type Ⅰ collagen matrix[J]. J Cell Biol,1997,137(6):1445-1457. doi:10.1083/jcb.137.6.1445. |
27 | BUGGE T H, KOMBRINCK K W, FLICK M J, et al. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogendeficiency[J]. Cell,1996,87(4):709-719. doi:10.1016/s0092-8674(00)81390-2. |
28 | QIANG L, YANG S, CUI Y H, et al. Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing[J]. Autophagy,2021,17(9):2128-2143. doi:10.1080/15548627.2020.1816342. |
29 | GOLDMAN R. Growth factors and chronic wound healing: Past, present, and future[J]. Adv Skin Wound Care,2004,17(1):24-35. doi:10.1097/00129334-200401000-00012. |
30 | GREENHALGH D G. The role of apoptosis in wound healing[J]. Int J Biochem Cell Biol,1998,30(9):1019-1030. doi:10.1016/s1357-2725(98)00058-2. |
31 | TERUEL-MONTOYA R, ROSENDAAL F R, MAR-TÍNEZ C. MicroRNAs in hemostasis[J]. J Thromb Haemost,2015,13(2):170-181. doi:10.1111/jth.12788. |
32 | FAHS F, BI X, YU F, et al. New insights into microRNAs in skin wound healing[J]. IUBMB Life,2015,67(12):889-896. doi:10.1002/iub.1449. |
33 | MEISGEN F, XU LANDÉN N, WANG A, et al. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes[J]. J Invest Dermatol,2014,134(7):1931-1940. doi:10.1038/jid.2014.89. |
34 | LI D,LI X I, WANG A, et al. MicroRNA-31 promotes skin wound healing by enhancing keratinocyte proliferation and migration[J]. J Invest Dermatol,2015,135(6):1676-1685. doi:10.1038/jid.2015.48. |
35 | BISWAS S,ROY S, BANERJEE J, et al. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds[J]. P Natl Acad Sci USA,2010,107(15):6976-6981. doi:10.1073/pnas.1001653107. |
36 | FASANARO P, D’ALESSANDRA Y,DI STEFANO V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3[J]. J Biol Chem,2008,283(23):15878-15883. doi:10.1074/jbc.M800731200. |
37 | CIECHOMSKA M, O’REILLY S, SUWARA M, et al. MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-β activated kinase 1 binding protein 1, implications for systemic sclerosis[J]. PLoS One,2014,9(12):e115596. doi:10.1371/journal.pone.0115596. |
38 | LI C, ZHU H Y, BAI W D, et al. miR-96 promotes collagen deposition in keloids by targeting Smad7[J]. Exp Ther Med,2019,17(1):773-781. doi:10.3892/etm.2018.7008. |
39 | ROOIJ E VAN, SUTHERLAND L B, QI X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA[J]. Science,2007,316(5824):575-579. doi:10.1126/science.1139089. |
40 | GATFIELD D, LE MARTELOT G, VEJNAR C E, et al. Integration of microRNA miR-122 in hepatic circadian gene expression[J]. Gene Dev,2009,23(11):1313-1326. doi:10.1101/gad.1781009. |
41 | BALZANO F, DEIANA M, GIUDICI S DEI, et al. miRNA stability in frozen plasma samples[J]. Molecules,2015,20(10):19030-19040. doi:10.3390/molecules201019030. |
42 | MALL C, ROCKE D M, DURBIN-JOHNSON B, et al. Stability of miRNA in human urine supports its biomarker potential[J]. Biomark Med,2013,7(4):623-631. doi:10.2217/bmm.13.44. |
43 | KELLER A, KREIS S, LEIDINGER P, et al. miRNAs in ancient tissue specimens of the tyrolean iceman[J]. Mol Biol Evol,2017,34(4):793-801. doi:10.1093/molbev/msw291. |
44 | IBANEZ-VENTOSO C, VORA M, DRISCOLL M. Sequence relationships among C. elegans,D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology[J]. PLoS One,2008,3(7):e2818. doi:10.1371/journal.pone.0002818. |
45 | YANG X, WANG J, GUO S, et al. miR-21 promotes keratinocyte migration and re-epithelialization during wound healing[J]. Int J Biol Sci,2011,7(5):685-690. doi:10.7150/ijbs.7.685. |
46 | HU Y,RAO S, WANG Z, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function[J]. Thera-nostics,2018,8(1):169-184. doi:10.7150/thno.21234. |
47 | JOHNSON S M, GROSSHANS H, SHINGARA J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell,2005,120(5):635-647. doi:10.1016/j.cell.2005.01.014. |
48 | ESQUELA-KERSCHER A, TRANG P, WIGGINS J F, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer[J]. Cell Cycle,2008,7(6):759-764. doi:10.4161/cc.7.6.5834. |
49 | NELSON P T, BALDWIN D A, KLOOSTERMAN W P, et al. RAKE and LNA-ISH reveal micro-RNA expression and localization in archival human brain[J]. RNA,2006,12(2):187-191. doi:10.1261/rna.2258506. |
50 | XI Y, NAKAJIMA G, GAVIN E, et al. Syste-matic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples[J]. RNA,2007,13(10):1668-1674. doi:10.1261/rna.642907. |
51 | MA J, PAN H, ZENG Y, et al. Exploration of the R code-based mathematical model for PMI estimation using profiling of RNA degradation in rat brain tissue at different temperatures[J]. Forensic Sci Med Pathol,2015,11(4):530-537. doi:10.1007/s12024-015-9703-7. |
52 | BARTEL D P. MicroRNAs: Target recognition and regulatory functions[J]. Cell,2009,136(2):215-233. doi:10.1016/j.cell.2009.01.002. |
53 | BARTEL D P, CHEN C. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs[J]. Nat Rev Genet,2004,5(5):396-400. doi:10.1038/nrg1328. |
54 | STARK A, BRENNECKE J, BUSHATI N, et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution[J]. Cell,2005,123(6):1133-1146. doi:10.1016/j.cell.2005.11.023. |
55 | LEUNG A K L, SHARP P A. MicroRNA functions in stress responses[J]. Mol Cell,2010,40(2):205-215. doi:10.1016/j.molcel.2010.09.027. |
56 | OLEJNICZAK M, KOTOWSKA-ZIMMER A, KRZY-ZOSIAK W. Stress-induced changes in miRNA biogenesis and functioning[J]. Cell Mol Life Sci,2018,75(2):177-191. doi:10.1007/s00018-017-2591-0. |
57 | O’CONNELL R M, RAO D S, CHAUDHURI A A, et al. Physiological and pathological roles for microRNAs in the immune system[J]. Nat Rev Immunol,2010,10(2):111-122. doi:10.1038/nri2708. |
58 | CHANG L, LIANG J, XIA X, et al. miRNA-126 enhances viability, colony formation, and migration of keratinocytes HaCaT cells by regulating PI3 K/AKT signaling pathway[J]. Cell Biol Int,2019,43(2):182-191. doi:10.1002/cbin.11088. |
59 | LI P,HE Q, LUO C, et al. Differentially expressed miRNAs in acute wound healing of the skin: A pilot study[J]. Medicine,2015,94(7):e458. doi:10.1097/MD.0000000000000458. |
60 | WANG T, FENG Y, SUN H, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing[J]. Am J Pathol,2012,181(6):1911-1920. |
61 | 彭涛,贾延劼,文全庆,等. 缺氧缺血性脑损伤新生大鼠脑组织小RNA表达的变化[J].中国当代儿科杂志,2010,12(5):373-376. |
PENG T, JIA Y J, WEN Q Q, et al. Expression of microRNA in neonatal rats with hypoxic-ischemic brain damage[J]. Zhongguo Dangdai Erke Zazhi,2010,12(5):373-376. | |
62 | SUN T, CHEN X, LIU Z, et al. Expression profiling of microRNAs in hippocampus of rats fol-lowing traumatic brain injury[J]. J Huazhong Univ Sci Technolog Med Sci,2014,34(4):548-553. doi:10.1007/s11596-014-1313-1. |
63 | AUNIN E, BROADLEY D, AHMED M I, et al. Exploring a role for regulatory miRNAs in wound healing during ageing: Involvement of miR-200c in wound repair[J]. Sci Rep,2017,7(1):3257. doi:10.1038/s41598-017-03331-6. |
64 | TU C, DU T, SHAO C, et al. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI[J]. Forensic Sci Med Pathol,2018,14(2):194-201. doi:10.1007/s12024-018-9973-y. |
65 | LV Y, MA K, ZHANG H, et al. A time course study demonstrating mRNA,microRNA,18S rRNA,and U6 snRNA changes to estimate PMI in deceased rat’s spleen[J]. J Forensic Sci,2014,59(5):1286-1294. doi:10.1111/1556-4029.12447. |
66 | 秦娟娟,路志勇,崔雪萍,等. MicroRNAs法医学应用的可能性和局限性[J].中国法医学杂志,2017,32(5):492-496. doi:10.03618/j.issn.1001-5728.2017.05.013. |
QIN J J, LU Z Y, CUI X P, et al. MicroRNAs application in forensic medicine: Possibilities and limitations[J]. Zhongguo Fayixue Zazhi,2017,32(5):492-496. | |
67 | ZUBAKOV D, BOERSMA A W M, CHOI Y, et al. MicroRNA markers for forensic body fluid identification obtained from microarray[J]. Int J Legal Med,2010,124(3):217-226. doi:10.1007/s00414-009-0402-3. |
68 | WANG Z, ZHANG J, LUO H, et al. Screening and confirmation of microRNA markers for forensic body fluid[J]. Forensic Sci Int Genet,2013,7(1):116-123. doi:10.1016/j.fsigen.2012.07.006. |
69 | SAUER E, EXTRA A, CACHÉE P, et al. Identification of organ tissue types and skin from forensic samples by microRNA expression analysis[J]. Forensic Sci Int Genet,2017,28:99-110. doi:10.1016/j.fsigen.2017.02.002. |
70 | CASSE J, MARTRILLE L, VIGNAUD J, et al. Skin wounds vitality markers in forensic pathology: An updated review[J]. Med Sci Law,2016,56(2):128-137. doi:10.1177/0025802415590175. |
[1] | 李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500. |
[2] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[3] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[4] | 曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477. |
[5] | 陈建波, 郭影, 陈再勇, 鲍人辉, 孔繁荣. 钩吻中毒死亡法医学鉴定1例[J]. 法医学杂志, 2023, 39(5): 509-511. |
[6] | 马钳钳, 张云, 秦丽娜. 播散型毛霉病致死1例[J]. 法医学杂志, 2023, 39(5): 507-509. |
[7] | 孙语新, 龚晓娟, 郝秀丽, 田雨馨, 陈艺铭, 张宝, 阎春霞. 婴儿猝死综合征与婴儿感染性猝死共同相关基因的筛选及其调控网络的生物信息学分析[J]. 法医学杂志, 2023, 39(5): 433-440. |
[8] | 高日红, 王新宙, 王冰, 郑立新. 大剂量盐酸地芬尼多与乙醇、氯化钾联合中毒死亡1例[J]. 法医学杂志, 2023, 39(5): 512-515. |
[9] | 杨宇, 雷梵章, 董玉友, 马剑龙, 石启强, 叶雪松. 口服盐酸地芬尼多中毒死亡案例的回顾性分析[J]. 法医学杂志, 2023, 39(4): 393-398. |
[10] | 范飞, 武娟, 邓振华. 听力学客观检测技术在法医临床学中的应用进展[J]. 法医学杂志, 2023, 39(4): 360-366. |
[11] | 向青青, 陈立方, 苏秦, 杜宇坤, 梁沛妍, 康晓东, 石河, 徐曲毅, 赵建, 刘超, 陈晓晖. 微生物群落演替在死亡时间推断中的研究进展[J]. 法医学杂志, 2023, 39(4): 399-405. |
[12] | 苏秦, 陈倩玲, 吴伟斌, 向青青, 杨成梁, 乔东访, 李志刚. 原发性脑干损伤致死大鼠的脑干组织代谢组学分析[J]. 法医学杂志, 2023, 39(4): 373-381. |
[13] | 盛利, 宋国铭. “钢珠”气枪射击致颅脑损伤死亡1例[J]. 法医学杂志, 2023, 39(4): 417-418. |
[14] | 曹宇奇, 施妍, 向平, 郭寅龙. 机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进展[J]. 法医学杂志, 2023, 39(4): 406-416. |
[15] | 姚泽伟, 贾自发, 韦铭菲, 史俊展, 李凡. 肝豆状核变性者外伤后脑干出血死亡1例[J]. 法医学杂志, 2023, 39(4): 419-421. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||