法医学杂志 ›› 2022, Vol. 38 ›› Issue (3): 374-384.DOI: 10.12116/j.issn.1004-5619.2021.410816
收稿日期:
2021-08-25
发布日期:
2022-06-25
出版日期:
2022-06-28
通讯作者:
张国忠,丛斌
作者简介:
丛斌,男,中国工程院院士,教授,主要从事法医学研究;E-mail:hbydbincong@126.com基金资助:
Yi-ming DONG(), Chen-teng YANG, Guo-zhong ZHANG(
), Bin CONG(
)
Received:
2021-08-25
Online:
2022-06-25
Published:
2022-06-28
Contact:
Guo-zhong ZHANG,Bin CONG
摘要:
在青壮年人群中,遗传性心脏病导致的死亡在心脏性猝死(sudden cardiac death,SCD)中占重要比例。遗传性心脏病可分为遗传性结构性心脏病和离子通道病。遗传性结构性心脏病主要为遗传性心肌病,可导致心律失常、心力衰竭和SCD。离子通道病引起的SCD案件尸体检验及组织病理学检验缺乏特征性的形态学表现,检验过程中如何确定死因成为法医学鉴定亟待解决的问题之一。本文通过梳理近年来国内外有关离子通道病和遗传性心肌病的研究成果,系统综述了离子通道病和遗传性心肌病的发病机制和分子遗传学相关研究,并探讨死后基因检测技术在法医学检案中的应用,以期为SCD的法医病理学研究及鉴定提供参考。
中图分类号:
董怡铭, 杨琛腾, 张国忠, 丛斌. 遗传性心脏病死后基因检测技术的研究进展及法医学应用[J]. 法医学杂志, 2022, 38(3): 374-384.
Yi-ming DONG, Chen-teng YANG, Guo-zhong ZHANG, Bin CONG. Research Progress and Forensic Application of Postmortem Genetic Testing in Hereditary Cardiac Diseases[J]. Journal of Forensic Medicine, 2022, 38(3): 374-384.
疾病 | 易感基因 | 位置 | 编码蛋白质 | 影响 | 突变位点 | 参考文献 |
---|---|---|---|---|---|---|
LQTS | KCNQ1 | 11p15.5-p15.4 | KV7.1 | Iks功能降低 | rs2519184、rs8234、rs10798 | [ |
KCNH2 | 7q36.1 | KV11.1 | Ikr功能降低 | S5-pore-S6 | [ | |
SCN5A | 3p22.2 | NaV1.5 | INa功能增加 | P448R、A915V、H558B | [ | |
CPVT | RYR2 | 1q42.1-q43 | 兰尼碱受体2 | SR中释放Ca2+增加 | 外显子3缺失 | [ |
CASQ2 | 1p13.3-p11 | 钙螯合素2 | Ca2+调节异常 | L180A | [ | |
BrS | SCN5A | 3p22.2 | NaV1.5 | INa功能丧失 | G1712C | [ |
IVF | DPP6 | 7q36.1-q36.3 | 二肽基肽酶-6 | IKv功能增加 | p.H332R | [ |
SQTS | KCNH2 | 7q36.1 | KV11.1 | Ikr功能增加 | N588K、T618I | [ |
KCNQ1 | 11p15.5-p15.4 | KV7.1 | Iks功能增加 | R259H | [ | |
KCNJ2 | 17q23 | Kir2.1 | IkI功能增加 | D172N、M301K | [ | |
PCCD | SCN5A | 3p22.2 | NaV1.5 | INa功能增加 | H558R、R1193Q | [ |
TRPM4 | 19q13.32 | 瞬时受体电位melastatin蛋白4 | Ca2+调节异常 | p.G844A | [ |
表1 离子通道病主要易感基因
Tab. 1 Main susceptibility genes of channelopathies
疾病 | 易感基因 | 位置 | 编码蛋白质 | 影响 | 突变位点 | 参考文献 |
---|---|---|---|---|---|---|
LQTS | KCNQ1 | 11p15.5-p15.4 | KV7.1 | Iks功能降低 | rs2519184、rs8234、rs10798 | [ |
KCNH2 | 7q36.1 | KV11.1 | Ikr功能降低 | S5-pore-S6 | [ | |
SCN5A | 3p22.2 | NaV1.5 | INa功能增加 | P448R、A915V、H558B | [ | |
CPVT | RYR2 | 1q42.1-q43 | 兰尼碱受体2 | SR中释放Ca2+增加 | 外显子3缺失 | [ |
CASQ2 | 1p13.3-p11 | 钙螯合素2 | Ca2+调节异常 | L180A | [ | |
BrS | SCN5A | 3p22.2 | NaV1.5 | INa功能丧失 | G1712C | [ |
IVF | DPP6 | 7q36.1-q36.3 | 二肽基肽酶-6 | IKv功能增加 | p.H332R | [ |
SQTS | KCNH2 | 7q36.1 | KV11.1 | Ikr功能增加 | N588K、T618I | [ |
KCNQ1 | 11p15.5-p15.4 | KV7.1 | Iks功能增加 | R259H | [ | |
KCNJ2 | 17q23 | Kir2.1 | IkI功能增加 | D172N、M301K | [ | |
PCCD | SCN5A | 3p22.2 | NaV1.5 | INa功能增加 | H558R、R1193Q | [ |
TRPM4 | 19q13.32 | 瞬时受体电位melastatin蛋白4 | Ca2+调节异常 | p.G844A | [ |
疾病 | 易感基因 | 参考文献 |
---|---|---|
LQTS | KCNE1、KCNE2、CALM1~3、TRDN、NOS1AP、CACNA1C | [ |
CPVT | CALM1、TRDN、TECRL、TRD、ANK2 | [ |
BrS | SCN1B、SCN2B、PKP2、KCNJ8、KCND3、ABCC9、HCN4、CACNA2D1、TRPM4 | [ |
IVF | IRX3、CALM1-3、CACNA1C、KCNJ8 | [ |
SQTS | CACNA1C、CACNB2、CACNA2D1 | [ |
PCCD | LMNA、GJA5、CACNA1C、HCN4、TBX3、TBX5、PRKAG2 | [ |
表2 离子通道病罕见易感基因
Tab. 2 Rare susceptibility genes of channelopathies
疾病 | 易感基因 | 参考文献 |
---|---|---|
LQTS | KCNE1、KCNE2、CALM1~3、TRDN、NOS1AP、CACNA1C | [ |
CPVT | CALM1、TRDN、TECRL、TRD、ANK2 | [ |
BrS | SCN1B、SCN2B、PKP2、KCNJ8、KCND3、ABCC9、HCN4、CACNA2D1、TRPM4 | [ |
IVF | IRX3、CALM1-3、CACNA1C、KCNJ8 | [ |
SQTS | CACNA1C、CACNB2、CACNA2D1 | [ |
PCCD | LMNA、GJA5、CACNA1C、HCN4、TBX3、TBX5、PRKAG2 | [ |
疾病 | 易感基因 | 位置 | 编码蛋白质 | 突变位点 | 参考文献 |
---|---|---|---|---|---|
HCM | MYH7 | 14q11.2 | β-肌球蛋白重链 | V934A、E1387K、M877I | [ |
MYBPC3 | 11p11.2 | 肌球蛋白结合蛋白C | p.Arg502Trp | [ | |
DCM | TTN | 2q31.2 | 肌联蛋白 | c.8678C>T、p.Thr2896Ile | [ |
LMNA | 1q21-22 | 核纤层蛋白A/C | rs4641 | [ | |
TNNT2 | 1q32.1 | 肌钙蛋白T | Leu84Phe、c.192+353 C>A、c.192+463G>A | [ | |
ARVC | PKP2 | 12p11 | 血小板亲和蛋白 | c.2489+1G>A、c.2146-1G>C | [ |
表3 遗传性心肌病主要易感基因
Tab. 3 Main susceptibility genes of hereditary cardiomyopathy
疾病 | 易感基因 | 位置 | 编码蛋白质 | 突变位点 | 参考文献 |
---|---|---|---|---|---|
HCM | MYH7 | 14q11.2 | β-肌球蛋白重链 | V934A、E1387K、M877I | [ |
MYBPC3 | 11p11.2 | 肌球蛋白结合蛋白C | p.Arg502Trp | [ | |
DCM | TTN | 2q31.2 | 肌联蛋白 | c.8678C>T、p.Thr2896Ile | [ |
LMNA | 1q21-22 | 核纤层蛋白A/C | rs4641 | [ | |
TNNT2 | 1q32.1 | 肌钙蛋白T | Leu84Phe、c.192+353 C>A、c.192+463G>A | [ | |
ARVC | PKP2 | 12p11 | 血小板亲和蛋白 | c.2489+1G>A、c.2146-1G>C | [ |
疾病 | 易感基因 | 参考文献 |
---|---|---|
HCM | ACTC1、MYOZ2、TPM1、TNNT2、TNNI3、CASQ2、RYR2 | [ |
DCM | FLNC、RBM20、TPM、MYH7、ACTC1、DMD、SCN5A、PKP2 | [ |
ARVC | TMEM43、LMNA、PLN、TTN、KCNQ1 | [ |
表4 遗传性心肌病罕见易感基因
Tab. 4 Rare susceptibility genes of hereditary cardiomyopathy
疾病 | 易感基因 | 参考文献 |
---|---|---|
HCM | ACTC1、MYOZ2、TPM1、TNNT2、TNNI3、CASQ2、RYR2 | [ |
DCM | FLNC、RBM20、TPM、MYH7、ACTC1、DMD、SCN5A、PKP2 | [ |
ARVC | TMEM43、LMNA、PLN、TTN、KCNQ1 | [ |
1 | 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2020》概述[J].中国心血管病研究,2021,19(7):582-590. doi:10.3969/j.issn.1672-5301.2021.07.002 . |
The Writing Committee of Report on Cardiovascular Health and Diseases in China. Key points of Report on Cardiovascular Health and Diseases in China 2020 [J]. Zhongguo Xinxueguanbing Yanjiu,2021,19(7):582-590. | |
2 | ACKERMAN M, ATKINS D L, TRIEDMAN J K. Sudden cardiac death in the young[J]. Circulation,2016,133(10):1006-1026. doi:10.1161/circulationaha.115.020254 . |
3 | SEMSARIAN C, INGLES J, WILDE A A. Sudden cardiac death in the young: The molecular autopsy and a practical approach to surviving relatives[J]. Eur Heart J,2015,36(21):1290-1296. doi:10.1093/eurheartj/ehv063 . |
4 | 官大威,赵锐. 离子通道病所致的心源性猝死与死后基因检测技术[J].法医学杂志,2010,26(2):120-127. doi:10.3969/j.issn.1004-5619.2010.02.012 . |
GUAN D W, ZHAO R. Postmortem genetic testing in sudden cardiac death due to ion channelopathies[J]. Fayixue Zazhi,2010,26(2):120-127. | |
5 | 李翠兰,胡大一. 心脏离子通道病引起的晕厥[J].心血管病学进展,2006,27(4):407-412. doi:10.3969/j.issn.1004-3934.2006.04.005 . |
LI C L, HU D Y. Cardiac channellopathy induced syncope[J]. Xinxueguanbingxue Jinzhan,2006,27(4):407-412. | |
6 | ISBISTER J, SEMSARIAN C. Cardiovascular genomics and sudden cardiac death in the young[J]. Aust J Gen Pract,2019,48(3):90-95. doi:10.31128/ajgp-09-18-4715 . |
7 | AMIN A S, GIUDICESSI J R, TIJSEN A J, et al. Variants in the 3' untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner[J]. Eur Heart J,2012,33(6):714-723. doi:10.1093/eurheartj/ehr473 . |
8 | SHIMIZU W, MAKIMOTO H, YAMAGATA K, et al. Association of genetic and clinical aspects of congenital long QT syndrome with life-threatening arrhythmias in Japanese patients[J]. JAMA Cardiol,2019,4(3):246-254. doi:10.1001/jamacardio.2018.4925 . |
9 | MODELL S M, LEHMANN M H. The long QT syndrome family of cardiac ion channelopathies: A HuGE review[J]. Genet Med,2006,8(3):143-155. doi:10.1097/01.gim.0000204468.85308.86 . |
10 | DHARMAWAN T, NAKAJIMA T, OHNO S, et al. Identification of a novel EXON3 deletion of RYR2 in a family with catecholaminergic polymorphic ventricular tachycardia[J]. Ann Noninvasive Electrocardiol,2019,24(3):e12623. doi:10.1111/anec.12623 . |
11 | WLEKLINSKI M J, KANNANKERIL P J, KNOLLMANN B C. Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia[J]. J Physiol,2020,598(14):2817-2834. doi:10.1113/jp276757 . |
12 | 陈燕玉,刘深荣,谢亮真,等. Brugada综合征SCN5A基因G1712C突变的功能分析[J].南方医科大学学报,2017,37(2):256-260. doi:10.3969/j.issn.1673-4254.2017.02.19 . |
CHEN Y Y, LIU S R, XIE L Z, et al. Functional analysis of a novel SCN5A mutation G1712C identified in Brugada syndrome[J]. Nanfang Yike Daxue Xuebao,2017,37(2):256-260. | |
13 | DING D B, FAN L L, XIAO Z, et al. A novel mutation of dipeptidyl aminopeptidase-like protein-6 in a family with suspicious idiopathic ventricular fibrillation[J]. QJM,2018,111(6):373-377. doi:10.1093/qjmed/hcy033 . |
14 | HANCOX J C, WHITTAKER D G, DU C, et al. Emerging therapeutic targets in the short QT syndrome[J]. Expert Opin Ther Targets,2018,22(5):439-451. doi:10.1080/14728222.2018.1470621 . |
15 | WU Z J, HUANG Y, FU Y C, et al. Characterization of a Chinese KCNQ1 mutation (R259H) that shortens repolarization and causes short QT syndrome 2[J]. J Geriatr Cardiol,2015,12(4):394-401. doi:10.11909/j.issn.1671-5411.2015.04.002 . |
16 | ASATRYAN B, MEDEIROS-DOMINGO A. Molecular and genetic insights into progressive cardiac conduction disease[J]. Europace,2019,21(8):1145-1158. doi:10.1093/europace/euz109 . |
17 | SU J Y, ZHANG R F, DONG Y X, et al. Preprodynorphin gene mutation causes progressive cardiac conduction disease: A whole-exome analysis of a pedigree[J]. Life Sci,2019,219:74-81. doi:10.1016/j.lfs.2018.12.062 . |
18 | ADLER A, NOVELLI V, AMIN A S, et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome[J]. Circulation,2020,141(6):418-428. doi:10.1161/CIR CULATIONAHA.119.043132 . |
19 | ALTMANN H M, TESTER D J, WILL M L, et al. Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: Elucidation of the triadin knockout syndrome[J]. Circulation,2015,131(23):2051-2060. doi:10.1161/CIR CULATIONAHA.115.015397 . |
20 | RONCHI C, BERNARDI J, MURA M, et al. NOS1AP polymorphisms reduce NOS1 activity and interact with prolonged repolarization in arrhythmogenesis[J]. Cardiovasc Res,2021,117(2):472-483. doi:10.1093/cvr/cvaa036 . |
21 | MELLOR G J, PANWAR P, LEE A K, et al. Type 8 long QT syndrome: Pathogenic variants in CACNA1C-encoded CaV1.2 cluster in STAC protein binding site[J]. Europace,2019,21(11):1725-1732. doi:10.1093/europace/euz215 . |
22 | SUMITOMO N. Current topics in catecholaminergic polymorphic ventricular tachycardia[J]. J Arrhythm,2016,32(5):344-351. doi:10.1016/j.joa.2015.09.008 . |
23 | COPPOLA G, CORRADO E, CURNIS A, et al. Update on Brugada syndrome 2019[J]. Curr Probl Cardiol,2021,46(3):100454. doi:10.1016/j.cpcardiol.2019.100454 . |
24 | KOIZUMI A, SASANO T, KIMURA W, et al. Genetic defects in a His-Purkinje system transcription factor, IRX3, cause lethal cardiac arrhythmias[J]. Eur Heart J,2016,37(18):1469-1475. doi:10.1093/eurheartj/ehv449 . |
25 | BROHUS M, ARSOV T, WALLACE D A, et al. Infanticide vs. inherited cardiac arrhythmias[J]. Europace,2021,23(3):441-450. doi:10.1093/europace/euaa272 . |
26 | BLANCARD M, DEBBICHE A, KATO K, et al. An African loss-of-function CACNA1C variant p.T1787M associated with a risk of ventricular fibrillation[J]. Sci Rep,2018,8(1):14619. doi:10.1038/ s41598-018-32867-4 . |
27 | VEERAMAH K R, KARAFET T M, WOLF D, et al. The KCNJ8-S422L variant previously associated with J-wave syndromes is found at an increased frequency in Ashkenazi Jews[J]. Eur J Hum Genet,2014,22(1):94-98. doi:10.1038/ejhg.2013.78 . |
28 | VILLARREAL-MOLINA T, GARCÍA-ORDÓÑEZ G P, REYES-QUINTERO Á E, et al. Clinical spectrum of SCN5A channelopathy in children with primary electrical disease and structurally normal hearts[J]. Genes (Basel),2021,13(1):16. doi:10.3390/genes13010016 . |
29 | DAUMY X, AMAROUCH M Y, LINDENBAUM P, et al. Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I[J]. Int J Cardiol,2016,207:349-358. doi:10.1016/j.ijcard.2016.01.052 . |
30 | AIBA T. Recent understanding of clinical sequencing and gene-based risk stratification in inherited primary arrhythmia syndrome[J]. J Cardiol,2019,73(5):335-342. doi:10.1016/j.jjcc.2019.01.009 . |
31 | JIA P L, WANG Y B, FU H, et al. Postmortem analysis of 4 mutation hotspots of KCNQ1, KCNH2, and SCN5A genes in sudden unexplained death in Southwest of China[J]. Am J Forensic Med Pathol,2018,39(3):218-222. doi:10.1097/PAF. 0000000000000411 . |
32 | WILDE A A M, AMIN A S, POSTEMA P G. Diagnosis, management and therapeutic strategies for congenital long QT syndrome[J]. Heart,2022,108:332-338. doi:10.1136/heartjnl-2020-318259 . |
33 | EARLE N, HAN D YEO, PILBROW A, et al. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome[J]. Heart Rhythm,2014,11(1):76-82. doi:10.1016/j.hrthm.2013.10.005 . |
34 | ROSTON T M, VINOCUR J M, MAGINOT K R, et al. Catecholaminergic polymorphic ventricular tachycardia in children: Analysis of therapeutic strategies and outcomes from an international multicenter registry[J]. Circ Arrhythm Electrophysiol,2015,8(3):633-642. doi:10.1161/CIRCEP.114.002217 . |
35 | BALTOGIANNIS G G, LYSITSAS D N, DI GIOVANNI G, et al. CPVT: Arrhythmogenesis, therapeutic management, and future perspectives. A brief review of the literature[J]. Front Cardiovasc Med,2019,6:92. doi:10.3389/fcvm.2019.00092 . |
36 | PÉREZ-RIERA A R, BARBOSA-BARROS R, DE REZENDE BARBOSA M P C, et al. Catecholaminergic polymorphic ventricular tachycardia, an update[J]. Ann Noninvasive Electrocardiol,2018,23(4):e12512. doi:10.1111/anec.12512 . |
37 | ZHANG J Z, WADDELL H M, JONES P P. Regulation of RYR2 by sarcoplasmic reticulum Ca2+ [J]. Clin Exp Pharmacol Physiol,2015,42(6):720-726. doi:10.1111/1440-1681.12364 . |
38 | JIANG H, LI X M, GE H Y, et al. Investigation of catecholaminergic polymorphic ventricular tachycardia children in china: clinical characteristics, delay to diagnosis, and misdiagnosis[J]. Chin Med J (Engl),2018,131(23):2864-2865. doi:10.4103/0366-6999.246078 . |
39 | GRAY B, BAGNALL R D, LAM L, et al. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia[J]. Heart Rhythm,2016,13(8):1652-1660. doi:10.1016/j.hrthm.2016.05.004 . |
40 | VAN DEN BOOGAARD M, SMEMO S, BURNICKA-TUREK O, et al. A common genetic variant within SCN10A modulates cardiac SCN5A expression[J]. J Clin Invest,2014,124(4):1844-1852. doi:10.1172/JCI73140 . |
41 | FAN J, JI C C, CHENG Y J, et al. A novel mutation in GPD1‑L associated with early repolarization syndrome via modulation of cardiomyocyte fast sodium currents[J]. Int J Mol Med,2020,45(3):947-955. doi:10.3892/ijmm.2020.4454 . |
42 | OHNO S, ZANKOV D P, DING W G, et al. KCNE5 (KCNE1L) variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation[J]. Circ Arrhythm Electrophysiol,2011,4(3):352-361. doi:10.1161/CIRCEP.110.959619 . |
43 | VISSER M, DOOIJES D, VAN DER SMAGT J J, et al. Next-generation sequencing of a large gene panel in patients initially diagnosed with idiopathic ventricular fibrillation[J]. Heart Rhythm,2017,14(7):1035-1040. doi:10.1016/j.hrthm.2017.01.010 . |
44 | CONTE G, GIUDICESSI J R, ACKERMAN M J. Idiopathic ventricular fibrillation: The ongoing quest for diagnostic refinement[J]. Europace,2021,23(1):4-10. doi:10.1093/europace/euaa211 . |
45 | DEWI I P, DHARMADJATI B B. Short QT syndrome: The current evidences of diagnosis and management[J]. J Arrhythm,2020,36(6):962-966. doi:10.1002/joa3.12439 . |
46 | BJERREGAARD P. Diagnosis and management of short QT syndrome[J]. Heart Rhythm,2018,15(8):1261-1267. doi:10.1016/j.hrthm.2018.02.034 . |
47 | PALLADINO A, PAPA A A, PETILLO R, et al. The role of TRPM4 gene mutations in causing familial progressive cardiac conduction disease: A further contribution[J]. Genes (Basel),2022,13(2):258. doi:10.3390/genes13020258 . |
48 | DOBRZYNSKI H, ANDERSON R H, ATKINSON A, et al. Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues[J]. Pharmacol Ther,2013,139(2):260-288. doi:10.1016/j.pharmthera.2013.04.010 . |
49 | CHEN X, BARAJAS-MARTÍNEZ H, XIA H, et al. Clinical and functional genetic characterization of the role of cardiac calcium channel variants in the early repolarization syndrome[J]. Front Cardiovasc Med,2021,8:680819. doi:10.3389/fcvm.2021.680819 . |
50 | LERMAN B B. Outflow tract ventricular arrhythmias: An update[J]. Trends Cardiovasc Med,2015,25(6):550-558. doi:10.1016/j.tcm.2015.01.011 . |
51 | OPDAL S H, FERRANTE L, ROGNUM T O, et al. Aquaporin-1 and aquaporin-9 gene variations in sudden infant death syndrome[J]. Int J Legal Med,2021,135(3):719-725. doi:10.1007/s00414-020-02493-9 . |
52 | GRAY B, ACKERMAN M J, SEMSARIAN C, et al. Evaluation after sudden death in the young: A global approach[J]. Circ Arrhythm Electrophysiol,2019,12(8):e007453. doi:10.1161/circep.119.007453 . |
53 | BRIELER J, BREEDEN M A, TUCKER J. Cardiomyopathy: An overview[J]. Am Fam Physician,2017,96(10):640-646. |
54 | ELLIOTT P, ANDERSSON B, ARBUSTINI E, et al. Classification of the cardiomyopathies: A position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases[J]. Eur Heart J,2008,29(2):270-276. doi:10.1093/eurheartj/ehm342 . |
55 | MARIAN A J, VAN ROOIJ E, ROBERTS R. Genetics and genomics of single-gene cardiovascular diseases: Common hereditary cardiomyopathies as prototypes of single-gene disorders[J]. J Am Coll Cardiol,2016,68(25):2831-2849. doi:10.1016/j.jacc.2016.09.968 . |
56 | WANG B, WANG J, WANG L F, et al. Genetic analysis of monoallelic double MYH7 mutations responsible for familial hypertrophic cardiomyopathy[J]. Mol Med Rep,2019,20(6):5229-5238. doi:10.3892/mmr.2019.10754 . |
57 | MARIAN A J, BRAUNWALD E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy[J]. Circ Res,2017,121(7):749-770. doi:10.1161/CIRCRESAHA.117.311059 . |
58 | JAMES C A, JONGBLOED J D H, HERSHBERGER R E, et al. International evidence based reappraisal of genes associated with arrhythmogenic right ventricular cardiomyopathy using the clinical genome resource framework[J]. Circ Genom Precis Med,2021,14(3):e003273. doi:10.1161/CIRCGEN.120.003273 . |
59 | YIN J, YANG J, REN F X, et al. Association of the LMNA gene single nucleotide polymorphism rs4641 with dilated cardiomyopathy[J]. Genet Mol Res,2015,14(4):15427-15434. doi:10.4238/2015.November.30.20 . |
60 | LI X, LUO R, GU H, et al. Cardiac troponin T (TNNT2) mutations in chinese dilated cardiomyopathy patients[J]. Biomed Res Int,2014:907360. doi:10.1155/2014/907360 . |
61 | ALVARADO F J, BOS J M, YUCHI Z, et al. Cardiac hypertrophy and arrhythmia in mice induced by a mutation in ryanodine receptor 2[J]. JCI Insight,2019,4(7):e126544. doi:10.1172/jci.insight.126544 . |
62 | CHEN S N, MESTRONI L, TAYLOR M R G. Genetics of dilated cardiomyopathy[J]. Curr Opin Cardiol,2021,36(3):288-294. doi:10.1097/hco.000 0000000000845 . |
63 | XIONG Q, CAO Q, ZHOU Q, et al. Arrhythmogenic cardiomyopathy in a patient with a rare loss-of-function KCNQ1 mutation[J]. J Am Heart Assoc,2015,4(1):e001526. doi:10.1161/JAHA.114.001526 . |
64 | BAUDHUIN L M, KOTZER K E, KLUGE M L, et al. What is the true prevalence of hypertrophic cardiomyopathy?[J]. J Am Coll Cardiol,2015,66(16):1845-1846. doi:10.1016/j.jacc.2015.07.074 . |
65 | MURESAN I D, AGOSTON-COLDEA L. Phenotypes of hypertrophic cardiomyopathy: Genetics, clinics, and modular imaging[J]. Heart Fail Rev,2020:1023-1036. doi:10.1007/s10741-020-09931-1 . |
66 | ALFARES A A, KELLY M A, MCDERMOTT G, et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: Expanded panels offer limited additional sensitivity[J]. Genet Med,2015,17(11):880-888. doi:10.1038/gim. 2014.205 . |
67 | LI L, BAINBRIDGE M N, TAN Y, et al. A potential oligogenic etiology of hypertrophic cardiomyopathy: A classic single-gene disorder[J]. Circ Res,2017,120(7):1084-1090. doi:10.1161/CIRCRESAHA.116.310559 . |
68 | SEDAGHAT-HAMEDANI F, KAYVANPOUR E, TUGRUL O F, et al. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: A meta-analysis on 7675 individuals[J]. Clin Res Cardiol,2018,107(1):30-41. doi:10.1007/s00392-017-1155-5 . |
69 | KISSOPOULOU A, TRINKS C, GREEN A, et al. Homozygous missense MYBPC3 Pro873His mutation associated with increased risk for heart failure development in hypertrophic cardiomyopathy[J]. ESC Heart Fail,2018,5(4):716-723. doi:10.1002/ehf2.12288 . |
70 | SANBE A. Dilated cardiomyopathy: A disease of the myocardium[J]. Biol Pharm Bull,2013,36(1):18-22. doi:10.1248/bpb.b212023 . |
71 | CIARAMBINO T, MENNA G, SANSONE G, et al. Cardiomyopathies: An overview[J]. Int J Mol Sci,2021,22(14):7722. doi:10.3390/ijms22147722 . |
72 | WEINTRAUB R G, SEMSARIAN C, MACDO-NALD P. Dilated cardiomyopathy[J]. Lancet,2017,390(10092):400-414. doi:10.1016/S0140-6736(16)31713-5 . |
73 | ZHANG Y, ZHANG J, BUTLER J, et al. Contemporary epidemiology, management, and outcomes of patients hospitalized for heart failure in China: Results from the China heart failure (China-HF) registry[J]. J Card Fail,2017,23(12):868-875. doi:10.1016/j.cardfail.2017.09.014 . |
74 | MCNALLY E M, GOLBUS J R, PUCKELWARTZ M J. Genetic mutations and mechanisms in dilated cardiomyopathy[J]. J Clin Invest,2013,123(1):19-26. doi:10.1172/JCI62862 . |
75 | KAYVANPOUR E, SEDAGHAT-HAMEDANI F, AMR A, et al. Genotype-phenotype associations in dilated cardiomyopathy: Meta-analysis on more than 8 000 individuals[J]. Clin Res Cardiol,2017,106(2):127-139. doi:10.1007/s00392-016-1033-6 . |
76 | LEWINTER M M, GRANZIER H L. Cardiac titin and heart disease[J]. J Cardiovasc Pharmacol,2014,63(3):207-212. doi:10.1097/FJC.0000000000000007 . |
77 | WARE J S, AMOR-SALAMANCA A, TAYAL U, et al. Genetic etiology for alcohol-induced cardiac toxicity[J]. J Am Coll Cardiol,2018,71(20):2293-2302. doi:10.1016/j.jacc.2018.03.462 . |
78 | LEE J, TERMGLINCHAN V, DIECKE S, et al. Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy[J]. Nature,2019,572(7769):335-340. doi:10.1038/s41586-019-1406-x . |
79 | PIONER J M, FORNARO A, COPPINI R, et al. Advances in stem cell modeling of dystrophin-associated disease: Implications for the wider world of dilated cardiomyopathy[J]. Front Physiol,2020,11:368. doi:10.3389/fphys.2020.00368 . |
80 | GASPERETTI A, ROSSI V A, CHIODINI A, et al. Differentiating hereditary arrhythmogenic right ventricular cardiomyopathy from cardiac sarcoidosis fulfilling 2010 ARVC task force criteria[J]. Heart Rhythm,2021,18(2):231-238. doi:10.1016/j.hrthm. 2020.09.015 . |
81 | BEN-HAIM Y, BEHR E R. Genetics of sudden cardiac death[J]. Curr Opin Cardiol,2022,37(3):212-218. doi:10.1097/hco.0000000000000946 . |
82 | CORRADO D, LINK M S, CALKINS H. Arrhythmogenic right ventricular cardiomyopathy[J]. N Engl J Med,2017,376(1):61-72. doi:10.1056/nejmra1509267 . |
83 | CAMARGO-ARIZA W A, GALVIS-BLANCO S J, CAMACHO-ENCISO T D P, et al. Arrhythmogenic right ventricular cardiomyopathy/dysplasia. Literature review and case report[J]. Arch Cardiol Mex,2018,88(1):51-59. doi:10.1016/j.acmx.2017.05.001 . |
84 | OHNO S. The genetic background of arrhythmogenic right ventricular cardiomyopathy[J]. J Arrhythm,2016,32(5):398-403. doi:10.1016/j.joa.2016.01.006 . |
85 | GERULL B, HEUSER A, WICHTER T, et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy[J]. Nat Genet,2004,36(11):1162-1164. doi:10.1038/ng1461 . |
86 | BAO J, WANG J, YAO Y, et al. Correlation of ventricular arrhythmias with genotype in arrhythmogenic right ventricular cardiomyopathy[J]. Circ Cardiovasc Genet,2013,6(6):552-556. doi:10.1161/circgenetics.113.000122 . |
87 | CALKINS H, CORRADO D, MARCUS F. Risk stratification in arrhythmogenic right ventricular cardiomyopathy[J]. Circulation,2017,136(21):2068-2082. doi:10.1161/circulationaha.117.030792 . |
88 | PAULIN F L, HODGKINSON K A, MACLAUGHLAN S, et al. Exercise and arrhythmic risk in TMEM43 p.S358L arrhythmogenic right ventricular cardiomyopathy[J]. Heart Rhythm,2020,17(7):1159-1166. doi:10.1016/j.hrthm.2020.02.028 . |
89 | SCHEIPER-WELLING S, TABUNSCIK M, GROSS T E, et al. Variant interpretation in molecular autopsy: A useful dilemma[J]. Int J Legal Med,2022,136(2):475-482. doi:10.1007/s00414-021-02764-z . |
90 | NOVELLI V, GAMBELLI P, MEMMI M, et al. Challenges in molecular diagnostics of channelopathies in the next-generation sequencing era: Less is more?[J]. Front Cardiovasc Med,2016,3:29. doi:10.3389/fcvm.2016.00029 . |
91 | BAGNALL R D, WEINTRAUB R G, INGLES J, et al. A Prospective study of sudden cardiac death among children and young adults[J]. N Engl J Med,2016,374(25):2441-2452. doi:10.1056/nejmoa1510687 . |
[1] | 李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500. |
[2] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[3] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[4] | 曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477. |
[5] | 陈建波, 郭影, 陈再勇, 鲍人辉, 孔繁荣. 钩吻中毒死亡法医学鉴定1例[J]. 法医学杂志, 2023, 39(5): 509-511. |
[6] | 马钳钳, 张云, 秦丽娜. 播散型毛霉病致死1例[J]. 法医学杂志, 2023, 39(5): 507-509. |
[7] | 孙语新, 龚晓娟, 郝秀丽, 田雨馨, 陈艺铭, 张宝, 阎春霞. 婴儿猝死综合征与婴儿感染性猝死共同相关基因的筛选及其调控网络的生物信息学分析[J]. 法医学杂志, 2023, 39(5): 433-440. |
[8] | 高日红, 王新宙, 王冰, 郑立新. 大剂量盐酸地芬尼多与乙醇、氯化钾联合中毒死亡1例[J]. 法医学杂志, 2023, 39(5): 512-515. |
[9] | 杨宇, 雷梵章, 董玉友, 马剑龙, 石启强, 叶雪松. 口服盐酸地芬尼多中毒死亡案例的回顾性分析[J]. 法医学杂志, 2023, 39(4): 393-398. |
[10] | 范飞, 武娟, 邓振华. 听力学客观检测技术在法医临床学中的应用进展[J]. 法医学杂志, 2023, 39(4): 360-366. |
[11] | 向青青, 陈立方, 苏秦, 杜宇坤, 梁沛妍, 康晓东, 石河, 徐曲毅, 赵建, 刘超, 陈晓晖. 微生物群落演替在死亡时间推断中的研究进展[J]. 法医学杂志, 2023, 39(4): 399-405. |
[12] | 苏秦, 陈倩玲, 吴伟斌, 向青青, 杨成梁, 乔东访, 李志刚. 原发性脑干损伤致死大鼠的脑干组织代谢组学分析[J]. 法医学杂志, 2023, 39(4): 373-381. |
[13] | 盛利, 宋国铭. “钢珠”气枪射击致颅脑损伤死亡1例[J]. 法医学杂志, 2023, 39(4): 417-418. |
[14] | 曹宇奇, 施妍, 向平, 郭寅龙. 机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进展[J]. 法医学杂志, 2023, 39(4): 406-416. |
[15] | 姚泽伟, 贾自发, 韦铭菲, 史俊展, 李凡. 肝豆状核变性者外伤后脑干出血死亡1例[J]. 法医学杂志, 2023, 39(4): 419-421. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||