法医学杂志 ›› 2025, Vol. 41 ›› Issue (5): 482-493.DOI: 10.12116/j.issn.1004-5619.2025.550501
• 法医微生物学专题 • 上一篇
刘志勇1,2(
), 赵兴春3, 陈玲4, 乌日嘎1, 苑美青3, 陈晓晖2, 赵建2, 徐曲毅2, 刘长晖2, 孙宏钰1(
), 刘超5(
)
收稿日期:2025-05-07
发布日期:2026-01-27
出版日期:2025-10-25
通讯作者:
孙宏钰,刘超
作者简介:刘志勇(1991—),男,博士,博士后,主要从事法医物证学研究;E-mail:zhiyongliu1@163.com
基金资助:
Zhi-yong LIU1,2(
), Xing-chun ZHAO3, Ling CHEN4, Ri-ga WU1, Mei-qing YUAN3, Xiao-hui CHEN2, Jian ZHAO2, Qu-yi XU2, Chang-hui LIU2, Hong-yu SUN1(
), Chao LIU5(
)
Received:2025-05-07
Online:2026-01-27
Published:2025-10-25
Contact:
Hong-yu SUN, Chao LIU
摘要:
随着微生物组学研究的深入和检测技术的不断进步,微生物在法医学领域的应用日益广泛,涵盖个体识别、体液来源推断、生物地理推断以及死亡时间、死亡原因和死亡地点推断等方面。由于缺乏完善的标准化体系,批次效应及实验室间差异致使分析结果的可重复性较低。尤其是面对法医学实践中的低质量样本时,这一问题更为突出,严重影响了法医微生物学分析结果作为证据的可靠性。本文基于国内外研究进展与实践经验,对法医微生物学分析技术的规范化进行系统归纳与探讨,旨在提升结果的可靠性,促进法医微生物分析的标准化发展。
中图分类号:
刘志勇, 赵兴春, 陈玲, 乌日嘎, 苑美青, 陈晓晖, 赵建, 徐曲毅, 刘长晖, 孙宏钰, 刘超. 法医微生物分析规范化的建议[J]. 法医学杂志, 2025, 41(5): 482-493.
Zhi-yong LIU, Xing-chun ZHAO, Ling CHEN, Ri-ga WU, Mei-qing YUAN, Xiao-hui CHEN, Jian ZHAO, Qu-yi XU, Chang-hui LIU, Hong-yu SUN, Chao LIU. Recommendations for the Standardization of Forensic Microbiological Analysis[J]. Journal of Forensic Medicine, 2025, 41(5): 482-493.
| 发表年份 | 文件名称 | 来源 |
|---|---|---|
| 2015 | The microbiome quality control project: baseline study design and future directions | [ |
| 2016 | 基于高通量测序的微生物检测方法 第1部分:基本规程 | T/SZGIA 1—2016 |
| 2017 | 基于高通量测序的环境微生物检测 第3部分:人粪便微生物16S rRNA基因检测法 | T/SZGIA 1.3—2017 |
| 2017 | 基于高通量测序的环境微生物检测 第4部分:临床样本病原微生物检测 | T/SZGIA 1.4—2017 |
| 2018 | 基于高通量测序的环境微生物检测 第2部分:人粪便微生物宏基因组检测方法 | T/SZGIA 1.2—2018 |
| 2018 | 临床微生物学检验样本的采集和转运 | WS/T 640—2018 |
| 2019 | 病原微生物实验室管理评价体系 | T/ZS 0068—2019 |
| 2019 | DNA extraction for human microbiome studies: the issue of standardization | [ |
| 2020 | 废水处理系统微生物样品前处理 通用技术规范 | GB/T 39303—2020 |
| 2020 | 微生物超低频突变测定 双重测序法 | GB/T 38481—2020 |
| 2020 | 体外诊断检验系统 病原微生物检测和鉴定用核酸定性体外检验程序 第1部分:通用要求、术语和定义 | GB/T 39367.1—2020 |
| 2020 | 微生物检测方法确认与验证指南 | RB/T 033—2020 |
| 2020 | 病原微生物实验室生物安全风险管理指南 | RB/T 040—2020 |
| 2020 | 高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识 | [ |
| 2020 | 微生物组测序与分析专家共识 | [ |
| 2020 | STROBE-metagenomics: a STROBE extension statement to guide the reporting of metagenomics studies | [ |
| 2021 | 环境微生物宏基因组检测 高通量测序法 | GB/T 40226—2021 |
| 2021 | 医学实验室 质量和能力的要求 第6部分:临床微生物学检验领域的要求 | GB/T 22576.6—2021 |
| 2021 | 用于病原微生物高通量检测的核酸提取技术规范 | GB/T 40458—2021 |
| 2021 | 微生物痕量基因残留测定 微滴数字PCR法 | GB/T 38485—2021 |
| 2021 | 基因检测服务中微生物组数据共享规范 | T/LTIA 13—2021 |
| 2021 | 食品微生物样品采集规范 | T/NAIA 038—2021 |
| 2021 | 宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识 | [ |
| 2021 | Reporting guidelines for human microbiome research: the STORMS checklist | [ |
| 2022 | 生物安全领域反恐怖防范要求 第1部分:高等级病原微生物实验室 | GA 1802.1—2022 |
| 2022 | 生物安全领域反恐怖防范要求 第2部分:病原微生物菌(毒)种保藏中心 | GA 1802.2—2022 |
| 2022 | 微生物实验室环境监测技术规程 | T/SZCA 4—2022 |
| 2022 | 微生物数据库安全体系设计要求 | T/CIIA 030—2022 |
| 2022 | 临床微生物检验基本技术标准 | WS/T 805—2022 |
| 2022 | Building up a clinical microbiota profiling: a quality framework proposal | [ |
| 2023 | 空气中病原微生物宏基因组测序鉴定方法 | GB/T 43628—2023 |
| 2023 | 食品安全国家标准 食品微生物学检验 总则 | GB 4789.1—2016 |
| 2023 | 公共卫生检测与评价实验室常用名词术语标准 第3部分:微生物检测 | WS/T 10011.3—2023 |
| 2023 | 微生物科学数据传输与加密安全技术要求 | T/STRSA 003—2023 |
| 2023 | 微生物科学数据汇交与安全管理要求 | T/STRSA 004—2023 |
| 2024 | 微生物资源库建设与管理规范 | DB4403/T 469—2024 |
| 2024 | 病原微生物宏基因组测序检测技术规程 | T/SDAS 1033—2024 |
| 2024 | 食品中病原微生物核酸提取规范 | T/AHFIA 116—2024 |
| 2024 | 食品中病原微生物核酸检测实验室管理规范 | T/AHFIA 115—2024 |
| 2024 | 动物病原微生物基因扩增实验室技术要求 | T/SHAAV 014—2024 |
| 2024 | 涉及病原微生物的科研项目生物安全审查规范 | T/ZS 0594—2024 |
| 2024 | International consensus statement on microbiome testing in clinical practice | [ |
| 2025 | 人肠道微生物高通量测序检测解读规范 | T/SZAS 94—2025 |
表1 微生物核酸测序的相关标准、规范与专家共识
Tab. 1 Standards, specifications, and expert consensuses related to microbial nucleic acid sequencingContinued Tab. 1
| 发表年份 | 文件名称 | 来源 |
|---|---|---|
| 2015 | The microbiome quality control project: baseline study design and future directions | [ |
| 2016 | 基于高通量测序的微生物检测方法 第1部分:基本规程 | T/SZGIA 1—2016 |
| 2017 | 基于高通量测序的环境微生物检测 第3部分:人粪便微生物16S rRNA基因检测法 | T/SZGIA 1.3—2017 |
| 2017 | 基于高通量测序的环境微生物检测 第4部分:临床样本病原微生物检测 | T/SZGIA 1.4—2017 |
| 2018 | 基于高通量测序的环境微生物检测 第2部分:人粪便微生物宏基因组检测方法 | T/SZGIA 1.2—2018 |
| 2018 | 临床微生物学检验样本的采集和转运 | WS/T 640—2018 |
| 2019 | 病原微生物实验室管理评价体系 | T/ZS 0068—2019 |
| 2019 | DNA extraction for human microbiome studies: the issue of standardization | [ |
| 2020 | 废水处理系统微生物样品前处理 通用技术规范 | GB/T 39303—2020 |
| 2020 | 微生物超低频突变测定 双重测序法 | GB/T 38481—2020 |
| 2020 | 体外诊断检验系统 病原微生物检测和鉴定用核酸定性体外检验程序 第1部分:通用要求、术语和定义 | GB/T 39367.1—2020 |
| 2020 | 微生物检测方法确认与验证指南 | RB/T 033—2020 |
| 2020 | 病原微生物实验室生物安全风险管理指南 | RB/T 040—2020 |
| 2020 | 高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识 | [ |
| 2020 | 微生物组测序与分析专家共识 | [ |
| 2020 | STROBE-metagenomics: a STROBE extension statement to guide the reporting of metagenomics studies | [ |
| 2021 | 环境微生物宏基因组检测 高通量测序法 | GB/T 40226—2021 |
| 2021 | 医学实验室 质量和能力的要求 第6部分:临床微生物学检验领域的要求 | GB/T 22576.6—2021 |
| 2021 | 用于病原微生物高通量检测的核酸提取技术规范 | GB/T 40458—2021 |
| 2021 | 微生物痕量基因残留测定 微滴数字PCR法 | GB/T 38485—2021 |
| 2021 | 基因检测服务中微生物组数据共享规范 | T/LTIA 13—2021 |
| 2021 | 食品微生物样品采集规范 | T/NAIA 038—2021 |
| 2021 | 宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识 | [ |
| 2021 | Reporting guidelines for human microbiome research: the STORMS checklist | [ |
| 2022 | 生物安全领域反恐怖防范要求 第1部分:高等级病原微生物实验室 | GA 1802.1—2022 |
| 2022 | 生物安全领域反恐怖防范要求 第2部分:病原微生物菌(毒)种保藏中心 | GA 1802.2—2022 |
| 2022 | 微生物实验室环境监测技术规程 | T/SZCA 4—2022 |
| 2022 | 微生物数据库安全体系设计要求 | T/CIIA 030—2022 |
| 2022 | 临床微生物检验基本技术标准 | WS/T 805—2022 |
| 2022 | Building up a clinical microbiota profiling: a quality framework proposal | [ |
| 2023 | 空气中病原微生物宏基因组测序鉴定方法 | GB/T 43628—2023 |
| 2023 | 食品安全国家标准 食品微生物学检验 总则 | GB 4789.1—2016 |
| 2023 | 公共卫生检测与评价实验室常用名词术语标准 第3部分:微生物检测 | WS/T 10011.3—2023 |
| 2023 | 微生物科学数据传输与加密安全技术要求 | T/STRSA 003—2023 |
| 2023 | 微生物科学数据汇交与安全管理要求 | T/STRSA 004—2023 |
| 2024 | 微生物资源库建设与管理规范 | DB4403/T 469—2024 |
| 2024 | 病原微生物宏基因组测序检测技术规程 | T/SDAS 1033—2024 |
| 2024 | 食品中病原微生物核酸提取规范 | T/AHFIA 116—2024 |
| 2024 | 食品中病原微生物核酸检测实验室管理规范 | T/AHFIA 115—2024 |
| 2024 | 动物病原微生物基因扩增实验室技术要求 | T/SHAAV 014—2024 |
| 2024 | 涉及病原微生物的科研项目生物安全审查规范 | T/ZS 0594—2024 |
| 2024 | International consensus statement on microbiome testing in clinical practice | [ |
| 2025 | 人肠道微生物高通量测序检测解读规范 | T/SZAS 94—2025 |
| 年度 | 文件名称 | 规范对象 | 发表机构 |
|---|---|---|---|
| 2017 | Contamination Prevention and Detection Guidelines for Forensic DNA Laboratories | 实验室 | SWGDAM1) |
| 2022 | DNA检验用产品人源性污染防控规范(GB/T41844—2022) | 试剂、耗材 | 国家标准化管理委员会 |
| 2023 | 法医物证实验室污染防控技术规范(SF/T 0129—2023) | 实验室及人员 | 司法部 |
| 2023 | Guideline for DNA Contamination Minimization in DNA Laboratories | 实验室 | ENFSI2) |
| 2023 | Contamination Controls: Scene of Crime (FSR-GUI-0016) | 犯罪现场 | FSR3) |
| 2023 | DNA Contamination Controls - Laboratory (FSR-GUI-0018) | 实验室 | FSR3) |
| 2025 | DNA Contamination Controls - Forensic Medical Examinations (FSR-GUI-0017) | 人员 | FSR3) |
表2 法医学污染防范相关规范性文件
Tab. 2 Regulatory documents on contamination prevention in forensic medicine
| 年度 | 文件名称 | 规范对象 | 发表机构 |
|---|---|---|---|
| 2017 | Contamination Prevention and Detection Guidelines for Forensic DNA Laboratories | 实验室 | SWGDAM1) |
| 2022 | DNA检验用产品人源性污染防控规范(GB/T41844—2022) | 试剂、耗材 | 国家标准化管理委员会 |
| 2023 | 法医物证实验室污染防控技术规范(SF/T 0129—2023) | 实验室及人员 | 司法部 |
| 2023 | Guideline for DNA Contamination Minimization in DNA Laboratories | 实验室 | ENFSI2) |
| 2023 | Contamination Controls: Scene of Crime (FSR-GUI-0016) | 犯罪现场 | FSR3) |
| 2023 | DNA Contamination Controls - Laboratory (FSR-GUI-0018) | 实验室 | FSR3) |
| 2025 | DNA Contamination Controls - Forensic Medical Examinations (FSR-GUI-0017) | 人员 | FSR3) |
| [1] | NELSON K E, WEINSTOCK G M, HIGHLANDER S K, et al. A catalog of reference genomes from the human microbiome[J]. Science,2010,328(5981):994-999. doi:10.1126/science.1183605 . |
| [2] | SCHMEDES S, BUDOWLE B. Microbial forensics[M]//SCHMIDT TM. Encyclopedia of microbiology, 4th Ed. Academic Press,2019:134-145. doi:10.1016/b9 78-0-12-801238-3.02483-1 . |
| [3] | FRANCESCHETTI L, LODETTI G, BLANDINO A, et al. Exploring the role of the human microbiome in forensic identification: Opportunities and challenges[J]. Int J Legal Med,2024,138(5):1891-1905. doi:10.1007/s00414-024-03217-z . |
| [4] | NODARI R, ARGHITTU M, BAILO P, et al. Forensic microbiology: When, where and how[J]. Microorganisms,2024,12(5):988. doi:10.3390/microorganisms12050988 . |
| [5] | NECKOVIC A, VAN OORSCHOT R A H, SZKUTA B, et al. Challenges in human skin microbial profiling for forensic science: A review[J]. Genes(Basel),2020,11(9):1015. doi:10.3390/genes 11091015 . |
| [6] | QUAAK F C A, VAN DE WAL Y, MAASKANT-VAN WIJK P A, et al. Combining human STR and microbial population profiling: Two case reports[J]. Forensic Sci Int Genet,2018,37:196-199. doi:10.1016/j.fsigen.2018.08.018 . |
| [7] | COCKING J H, TURLEY S R, FOFANOV V Y, et al. Forensic analysis of soil microbiomes: linking evidence to a geographic location[J]. bioRxiv,2020. doi:10.1101/2020.07.10.198044 . |
| [8] | 刘志勇,沈雪枫,陈慧,等. 法医微生物学研究进展[J].中国法医学杂志,2022,37(3):223-227. doi:10.13618/j.issn.1001-5728.2022.03.002 . |
| LIU Z Y, SHEN X F, CHEN H, et al. Research progress of forensic microbiology[J]. Zhongguo Fayixue Zazhi.2022,37(3):223-227. | |
| [9] | 刘超,朱波峰. 法医微生物学[M].广州:中山大学出版社,2024:6. |
| LIU C, ZHU B F, Forensic microbiology[M]. Guangzhou: Sun Yat-sen University Press,2024:6. | |
| [10] | 丛斌. 法医学科学技术体系基本架构[J].中国法医学杂志,2024,39(1):5-7. doi:10.13618/j.issn.1001-5728.2024.01.001 . |
| CONG B. Basic framework of science and technology system in the field of forensic medicine[J]. Zhongguo Fayixue Zazhi,2024,39(1):5-7. | |
| [11] | 赵西巨. 专家证言、新科学理论与法官角色——以美国法中的Daubert标准为中心[J].证据科学,2010,18(1):29-38. doi:10.3969/j.issn.1674-1226.2010.01.003 . |
| ZHAO X J. Expert testimony, novel scientific theories and judge’s role: Take the Daubert test in United States’ law as the center[J]. Zhengju Kexue,2010,18(1):29-38. | |
| [12] | SKONIECZNA K, KOVACEVIC-GRUJICIC N, SRIVASTAVA A, et al. Salivary microbiome signatures of Poles and Serbians and its potential for prediction of biogeographic ancestry[J]. Forensic Sci Int Genet,2025,74:103173. doi:10.1016/j.fsigen.2024.103173 . |
| [13] | LIU Z Y, LIU J J, GENG J J, et al. Metatranscriptomic characterization of six types of forensic samples and its potential application to body fluid/tissue identification: A pilot study[J]. Forensic Sci Int Genet,2024,68:102978. doi:10.1016/j.fsigen. 2023.102978 . |
| [14] | YU K M, CHO H S, LEE A-MI, et al. Analysis of the influence of host lifestyle (coffee consumption, drinking, and smoking) on Korean oral microbiome[J]. Forensic Sci Int Genet,2024,68:102942. doi:10.1016/j.fsigen.2023.102942 . |
| [15] | MARTINO C, DILMORE A H, BURCHAM Z M, et al. Microbiota succession throughout life from the cradle to the grave[J]. Nat Rev Microbiol,2022,20(12):707-720. doi:10.1038/s41579-022-007 68-z . |
| [16] | HUANG L T, LIANG X M, XIAO G C, et al. Response of salivary microbiome to temporal, environmental, and surface characteristics under in vitro exposure[J]. Forensic Sci Int Genet,2024,70:103020. doi:10.1016/j.fsigen.2024.103020 . |
| [17] | LIU R N, GU Y X, SHEN M W, et al. Predicting postmortem interval based on microbial community sequences and machine learning algorithms[J]. Environ Microbiol,2020,22(6):2273-2291. doi:10.1111/1462-2920.15000 . |
| [18] | SCHLOSS P D. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research[J]. mBio,2018,9(3):e00525-18. doi:10.1128/mbio.00525-18 . |
| [19] | 王景,赵维殳,肖湘. 大数据时代的深渊微生物研究[J].生命科学,2023,35(12):1630-1638. doi:10.13376/j.cbls/2023178 . |
| WANG J, ZHAO W S, XIAO X. Hadal microbial research in the age of big data[J]. Shengming Kexue,2023,35(12):1630-1638. | |
| [20] | NEARING J T, COMEAU A M, LANGILLE M G I. Identifying biases and their potential solutions in human microbiome studies[J]. Microbiome,2021,9(1):113. doi:10.1186/s40168-021-01059-0 . |
| [21] | WEINROTH M D, BELK A D, DEAN C, et al. Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies[J]. J Anim Sci,2022,100(2):skab346. doi:10.1093/jas/skab346 . |
| [22] | WEYRICH L S, FARRER A G, EISENHOFER R, et al. Laboratory contamination over time during low-biomass sample analysis[J]. Mol Ecol Resour,2019,19(4):982-996. doi:10.1111/1755-0998.13011 . |
| [23] | MAROTZ C A, SANDERS J G, ZUNIGA C, et al. Improving saliva shotgun metagenomics by chemical host DNA depletion[J]. Microbiome,2018,6(1):42. doi:10.1186/s40168-018-0426-3 . |
| [24] | BUDOWLE B, CONNELL N D, BIELECKA-ODER A, et al. Validation of high throughput sequencing and microbial forensics applications[J]. Investig Genet,2014,5:9. doi:10.1186/2041-2223-5-9 . |
| [25] | BUDOWLE B, SCHUTZER S E, MORSE S A, et al. Criteria for validation of methods in microbial forensics[J]. Appl Environ Microbiol,2008,74(18):5599-5607. doi:10.1128/AEM.00966-08 . |
| [26] | BUDOWLE B, SCHUTZER S E, EINSELN A, et al. Building microbial forensics as a response to bioterrorism[J]. Science,2003,301(5641):1852-1853. doi:10.1126/science.1090083 . |
| [27] | SWAYAMBHU M, KÜMMERLI R, ARORA N. Microbiome-based stain analyses in crime scenes[J]. Appl Environ Microbiol,2023,89(1):e01325-22. doi:10.1128/aem.01325-22 . |
| [28] | SINHA R, ABNET C C, WHITE O, et al. The microbiome quality control project: Baseline study design and future directions[J]. Genome Biol,2015,16:276. doi:10.1186/s13059-015-0841-8 . |
| [29] | GREATHOUSE K L, SINHA R, VOGTMANN E. DNA extraction for human microbiome studies: The issue of standardization[J]. Genome Biol,2019,20:212. doi:10.1186/s13059-019-1843-8 . |
| [30] | 中华医学会检验医学分会. 高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识[J].中华检验医学杂志,2020,43(12):1181-1195. doi:10.3760/cma.j.cn114452-20200903-00704 . |
| Chinese Society of Laboratory Medicine. Expert consensus on clinical standardized application of metagenomics next‐generation sequencing for detection of pathogenic microorganisms[J]. Zhonghua Jianyan Yixue Zazhi,2020,43(12):1181-1195. | |
| [31] | 段云峰,王升跃,陈禹保,等. 微生物组测序与分析专家共识[J].生物工程学报,2020,36(12):2511-2524. doi:10.13345/j.cjb.200386 . |
| DUAN Y F, WANG S Y, CHEN Y B, et al. Expert consensus on microbiome sequencing and analysis[J].Shengwugongcheng Xuebao,2020,36(12):2511-2524. | |
| [32] | BHARUCHA T, OESER C, BALLOUX F, et al. STROBE-metagenomics: A STROBE extension statement to guide the reporting of metagenomics studies[J]. Lancet Infect Dis,2020,20(10):e251-e260. doi:10.1016/S1473-3099(20)30199-7 . |
| [33] | 中华医学会检验医学分会临床微生物学组,中华医学会微生物学与免疫学分会临床微生物学组,中国医疗保健国际交流促进会临床微生物与感染分会. 宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识[J].中华检验医学杂志,2021,44(2):107-120. doi:10.3760/cma.j.cn114452-20201026-00794 . |
| Clinical Microbiology Group of Chinese Society of Laboratory Medicine, Clinical Microbiology Group of Chinese Society of Microbiology and Immunology, Society of Clinical Microbiology and Infection of China International Exchange and Promotion Association for Medical and Healthcare. Chinese expert consensus on metagenomics next‐generation sequencing application on pathogen detection of infectious diseases[J]. Zhonghua Jianyan Yixue Zazhi,2021,44(2):107-120. | |
| [34] | MIRZAYI C, RENSON A, CONSORTIUM G S, et al. Reporting guidelines for human microbiome research: The STORMS checklist[J]. Nat Med,2021,27(11):1885-1892. doi:10.1038/s41591-021-01552-x . |
| [35] | SCHERZ V, GREUB G, BERTELLI C. Building up a clinical microbiota profiling: A quality framework proposal[J]. Crit Rev Microbiol,2022,48(3):356-375. doi:10.1080/1040841X.2021.1975642 . |
| [36] | PORCARI S, MULLISH B H, ASNICAR F, et al. International consensus statement on microbiome testing in clinical practice[J]. Lancet Gastroenterol,2025,10(2):154-167. doi:10.1016/s2468-1253(24)00311-x . |
| [37] | KENNEDY K M, DE GOFFAU M C, PEREZ-MUÑOZ M E, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies[J]. Nature,2023,613(7945):639-649. doi:10.1038/s41586-022-05546-8 . |
| [38] | PENNISI E. Contamination plagues some microbiome studies[J]. Science,2014,346(6211):801. doi:10.1126/science.346.6211.801 . |
| [39] | TAN C C S, KO K K K, CHEN H, et al. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans[J]. Nat Microbiol,2023,8(5):973-985. doi:10.1038/s4 1564-023-01350-w . |
| [40] | MINICH J J, ZHU Q Y, JANSSEN S, et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples[J]. mSystems,2018,3(3):e00218-17. doi:10.1128/msystems.00218-17 . |
| [41] | EISENHOFER R, MINICH J J, MAROTZ C, et al. Contamination in low microbial biomass microbiome studies: Issues and recommendations[J]. Trends Microbiol,2019,27(2):105-117. doi:10.1016/j.tim.2018. 11.003 . |
| [42] | STINSON L F, KEELAN J A, PAYNE M S. Identification and removal of contaminating microbial DNA from PCR reagents: Impact on low-biomass microbiome analyses[J]. Lett Appl Microbiol,2019,68(1):2-8. doi:10.1111/lam.13091 . |
| [43] | BENEDETTI B, ROBERTI P, CIUFFI M, et al. “From womb to tomb; we’re bound to others”: Microbiome in forensic science[J]. J Pediatr Neonat Individual Med,2019,8(2):e080215. doi:10.7363/080215 . |
| [44] | LEE S Y, WOO S K, CHOI G W, et al. Microbial forensic analysis of bacterial fingerprint by sequence comparison of 16S rRNA gene[J]. J Forensic Res,2015,6(5):297. doi:10.4172/2157-7145. 1000297 . |
| [45] | BJERRE R D, HUGERTH L W, BOULUND F, et al. Effects of sampling strategy and DNA extraction on human skin microbiome investigations[J]. Sci Rep,2019,9(1):17287. doi:10.1038/s41598-019-53599-z . |
| [46] | KUSKE C R, BANTON K L, ADORADA D L, et al. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil[J]. Appl Environ Microbiol,1998,64(7):2463-2472. doi:10.1128/aem.64.7.2463-2472.1998 . |
| [47] | COSTEA P I, ZELLER G, SUNAGAWA S, et al. Towards standards for human fecal sample processing in metagenomic studies[J]. Nat Biotechnol,2017,35(11):1069-1076. doi:10.1038/nbt.3960 . |
| [48] | SINHA R, ABU-ALI G, VOGTMANN E, et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium[J]. Nat Biotechnol,2017,35(11):1077-1086. doi:10.1038/nbt. 3981 . |
| [49] | DAVIS A, KOHLER C, ALSALLAQ R, et al. Improved yield and accuracy for DNA extraction in microbiome studies with variation in microbial biomass[J]. Biotechniques,2019,66(6):285-289. doi: 10.2144/btn-2019-0016 . |
| [50] | NOCKER A, SOSSA-FERNANDEZ P, BURR M D, et al. Use of propidium monoazide for live/dead distinction in microbial ecology[J]. Appl Environ Microbiol,2007,73(16):5111-5117. doi:10.1128/AEM. 02987-06 . |
| [51] | 罗珮,张晨虹. 胃组织微生物群系高通量测序研究中去除宿主DNA的方法比较[J].中国科学(生命科学),2023,53(5):725-735. doi:10.1360/SSV-2021-0341 . |
| LUO P, ZHANG C H. Comparison of host DNA depletion methods in gastric tissue microbiome analysis based on high-throughput sequencing[J]. Zhongguo Kexue (Shengming Kexue),2023,53(5):725-735. | |
| [52] | CHAN A P, SIDDIQUE A, DESPLAT Y, et al. A CRISPR-enhanced metagenomic NGS test to improve pandemic preparedness[J]. Cell Rep Methods,2023,3(5):100463. doi:10.1016/j.crmeth.2023. 100463 . |
| [53] | HERAVI F S, ZAKRZEWSKI M, VICKERY K, et al. Host DNA depletion efficiency of microbiome DNA enrichment methods in infected tissue samples[J]. J Microbiol Methods,2020,170:105856. doi:10.1016/j.mimet.2020.105856 . |
| [54] | QIU X, WU L, HUANG H, et al. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning[J]. Appl Environ Microbiol,2001,67(2):880-887. doi:10. 1128/AEM.67.2.880-887.2001 . |
| [55] | PÄÄBO S, IRWIN D M, WILSON A C. DNA damage promotes jumping between templates during enzymatic amplification[J]. J Biol Chem,1990,265(8):4718-4721. |
| [56] | QIN Y J, WU L Y, ZHANG Q T, et al. Effects of error, chimera, bias, and GC content on the accuracy of amplicon sequencing[J]. mSystems,2023,8(6):e01025-23. doi:10.1128/msystems.01025-23 . |
| [57] | HAAS B J, GEVERS D, EARL A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Res,2011,21(3):494-504. doi:10.1101/gr.112730.110 . |
| [58] | GOHL D M, VANGAY P, GARBE J, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies[J]. Nat Biotechnol,2016,34(9):942-949. doi:10.1038/nbt. 3601 . |
| [59] | DE WOLFE T J, WRIGHT E S. Multi-factorial examination of amplicon sequencing workflows from sample preparation to bioinformatic analysis[J]. BMC Microbiol,2023,23(1):107. doi:10.1186/s128 66-023-02851-8 . |
| [60] | SZE M A, SCHLOSS P D. The impact of DNA polymerase and number of rounds of amplification in PCR on 16S rRNA gene sequence data[J]. mSphere,2019,4(3):e00163-19. doi:10.1128/mSp here.00163-19 . |
| [61] | ZHOU Y P, LIU Y X, LI X M. USEARCH 12: Open-source software for sequencing analysis in bioinformatics and microbiome[J]. Imeta,2024,3(5):e236. doi:10.1002/imt2.236 . |
| [62] | ROGNES T, FLOURI T, NICHOLS B, et al. VSEARCH: A versatile open source tool for metagenomics[J]. PeerJ,2016,4:e2584. doi:10.7717/peerj.2584 . |
| [63] | OLOMU I N, PENA-CORTES L C, LONG R A, et al. Elimination of “kitome” and “splashome” contamination results in lack of detection of a unique placental microbiome[J]. BMC Microbiol,2020,20(1):157. doi:10.1186/s12866-020-01839-y . |
| [64] | SALTER S J, COX M J, TUREK E M, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses[J]. BMC Biol,2014,12:87. doi:10.1186/s12915-014-0087-z . |
| [65] | MOLINA N M, SOLA-LEYVA A, HAAHR T, et al. Analysing endometrial microbiome: Methodological considerations and recommendations for good practice[J]. Hum Reprod,2021,36(4):859-879. doi:10. 1093/humrep/deab009 . |
| [66] | GOODRICH J K, DI RIENZI S C, POOLE A C, et al. Conducting a microbiome study[J]. Cell,2014,158(2):250-262. doi:10.1016/j.cell.2014. 06.037 . |
| [67] | DAVIS N M, PROCTOR D M, HOLMES S P, et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data[J]. Microbiome,2018,6(1):226. doi:10.1186/s40168-018-0605-2 . |
| [68] | MCKNIGHT D T, HUERLIMANN R, BOWER D S, et al. microDecon: A highly accurate read-subtraction tool for the post-sequencing removal of contamination in metabarcoding studies[J]. Environ DNA,2019,1:14-25. doi:10.1002/edn3.11 . |
| [69] | MARTÍ J M. Recentrifuge: Robust comparative analysis and contamination removal for metagenomics[J]. PLoS Comput Biol,2019,15(4):e1006967. doi:10.1371/journal.pcbi.1006967 . |
| [70] | PIRO V C, RENARD B Y. Contamination detection and microbiome exploration with GRIMER[J]. GigaScience,2022,12:giad017. doi:10.1093/gigascience/giad017 . |
| [71] | SMIRNOVA E, HUZURBAZAR S, JAFARI F. PERFect: PERmutation Filtering test for microbiome data[J]. Biostatistics,2019,20(4):615-631. doi:10.1093/biostatistics/kxy020 . |
| [72] | NGUYEN N H, SMITH D, PEAY K, et al. Parsing ecological signal from noise in next generation amplicon sequencing[J]. New Phytol,2015,205(4):1389-1393. doi:10.1111/nph.12923 . |
| [73] | AUSTIN G I, PARK H, MEYDAN Y, et al. Contamination source modeling with SCRuB improves cancer phenotype prediction from microbiome data[J]. Nat Biotechnol,2023,41(12):1820-1828. doi:10.1038/s41587-023-01696-w . |
| [74] | MCGHEE J J, RAWSON N, BAILEY B A, et al. Meta-SourceTracker: Application of Bayesian source tracking to shotgun metagenomics[J]. PeerJ,2020,8:e8783. doi:10.7717/peerj.8783 . |
| [75] | CANTU M, MORRISON M A, GAGAN J. Standardized comparison of different DNA sequencing platforms[J]. Clin Chem,2022,68(7):872-876. doi:10.1093/clinchem/hvac023 . |
| [76] | FOOX J, TIGHE S W, NICOLET C M, et al. Performance assessment of DNA sequencing platforms in the ABRF Next-Generation Sequencing Study[J]. Nat Biotechnol,2021,39(9):1129-1140. doi:10.1038/s41587-021-01049-5 . |
| [77] | D’AMORE R, IJAZ U Z, SCHIRMER M, et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling[J]. BMC Genomics,2016,17:55. doi:10.1186/s12864-015-2194-9 . |
| [78] | PARK C, KIM S B, CHOI S H, et al. Comparison of 16S rRNA gene based microbial profiling using five next-generation sequencers and various primers[J]. Front Microbiol,2021,12:715500. doi:10.3389/fmicb.2021.715500 . |
| [79] | SATO M P, OGURA Y, NAKAMURA K, et al. Comparison of the sequencing bias of currently available library preparation kits for Illumina sequencing of bacterial genomes and metagenomes[J]. DNA Res,2019,26(5):391-398. doi:10.1093/dnares/dsz017 . |
| [80] | POPTSOVA M S, IL’ICHEVA I A, NECHIPURENKO D Y, et al. Non-random DNA fragmentation in next-generation sequencing[J]. Sci Rep,2014,4:4532. doi:10.1038/srep04532 . |
| [81] | PEREIRA-MARQUES J, HOUT A, FERREIRA R M, et al. Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing for microbiome analysis[J]. Front Microbiol,2019,10:1277. doi:10.3389/fmicb.2019. 01277 . |
| [82] | BUSTOS-CAPARROS E, VIVER T, GAGO J, et al. Sequencing depth (coverage) can bias microbial intraspecies diversity estimates and how to account for it[EB/OL]. Res Sq.(2024-07-19)[2025-09-26]. . |
| [83] | ZAHEER R, NOYES N, ORTEGA POLO R, et al. Impact of sequencing depth on the characterization of the microbiome and resistome[J]. Sci Rep,2018,8(1):5890. doi:10.1038/s41598-018-24280-8 . |
| [84] | BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol,2019,37(8):852-857. doi:10.1038/s41587-019-0209-9 . |
| [85] | SCHLOSS P D. Reintroducing mothur: 10 years later[J]. Appl Environ Microbiol,2020,86(2):e02343-19. doi:10.1128/AEM.02343-19 . |
| [86] | SERGAKI C, ANWAR S, FRITZSCHE M, et al. Developing whole cell standards for the microbiome field[J]. Microbiome,2022,10(1):123. doi:10.1186/s40168-022-01313-z . |
| [87] | MCDONALD D, PRICE M N, GOODRICH J, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea[J]. ISME J,2012,6(3):610-618. doi:10.1038/ismej.2011.139 . |
| [88] | QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools[J]. Nucleic Acids Res,2013,41(Database issue 1):D590-D596. doi:10.1093/nar/gks1219 . |
| [89] | COLE J R, WANG Q, FISH J A, et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis[J]. Nucleic Acids Res,2014,42(Database issue 1):D633-D642. doi:10. 1093/nar/gkt1244 . |
| [90] | SAYERS E W, BARRETT T, BENSON D A, et al. Database resources of the National Center for Biotechnology Information[J]. Nucleic Acids Res,2009,37(Database issue 1):D5-D15. doi:10.1093/nar/gkn741 . |
| [91] | SHEIK C S, REESE B K, TWING K I, et al. Identification and removal of contaminant sequences from ribosomal gene databases: Lessons from the census of deep life[J]. Front Microbiol,2018,9:840. doi:10.3389/fmicb.2018.00840 . |
| [92] | FEDERHEN S. Type material in the NCBI taxonomy database[J]. Nucleic Acids Res,2015,43(Database issue 1):D1086-D1098. doi:10.1093/nar/gku 1127 . |
| [93] | BALVOČIŪTĖ M, HUSON D H. SILVA, RDP, Greengenes, NCBI and OTT — How do these taxonomies compare?[J]. BMC Genomics,2017,18(S2):114. doi:10.1186/s12864-017-3501-4 . |
| [94] | RAO C T, COYTE K Z, BAINTER W, et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants[J]. Nature,2021,591(7851):633-638. doi:10.1038/s41586-021-03241-8 . |
| [95] | MAGHINI D G, DVORAK M, DAHLEN A, et al. Quantifying bias introduced by sample collection in relative and absolute microbiome measurements[J]. Nat Biotechnol,2024,42(2):328-338. doi:10.1038/s41587-023-01754-3 . |
| [96] | STÄMMLER F, GLÄSNER J, HIERGEIST A, et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria[J]. Microbiome,2016,4(1):28. doi:10.1186/s40168-016-0175-0 . |
| [97] | SMETS W, LEFF J W, BRADFORD M A, et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing[J]. Soil Biol Biochem,2016,96:145-151. doi:10.1016/j.soilbio. 2016. 02.003 . |
| [98] | TETTAMANTI BOSHIER F A, SRINIVASAN S, LOPEZ A, et al. Complementing 16S rRNA gene amplicon sequencing with total bacterial load to infer absolute species concentrations in the vaginal microbiome[J]. mSystems,2020,5(2):e00777-19. doi:10.1128/MSYSTEMS.00777-19 . |
| [99] | VANDEPUTTE D, KATHAGEN G, D’HOE K, et al. Quantitative microbiome profiling links gut community variation to microbial load[J]. Nature,2017,551(7681):507-511. doi:10.1038/nature24460 . |
| [100] | TKACZ A, HORTALA M, POOLE P S. Absolute quantitation of microbiota abundance in environmental samples[J]. Microbiome,2018,6(1):110. doi:10. 1186/s40168-018-0491-7 . |
| [101] | BELL K L, BURGESS K S, BOTSCH J C, et al. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures[J]. Mol Ecol,2019,28(2):431-455. doi:10. 1111/mec.14840 . |
| [102] | BROOKS J P, EDWARDS D J, HARWICH JR M D, et al. The truth about metagenomics: Quantifying and counteracting bias in 16S rRNA studies[J]. BMC Microbiol,2015,15:66. doi:10.1186/s12866-015-0351-6 . |
| [103] | TOURLOUSSE D M, YOSHIIKE S, OHASHI A, et al. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing[J]. Nucleic Acids Res,2017,45(4):e23. doi:10.1093/nar/gk w984 . |
| [104] | WANG X F, HOWE S, DENG F L, et al. Current applications of absolute bacterial quantification in microbiome studies and decision-making regarding different biological questions[J]. Microorganisms,2021,9(9):1797. doi:10.3390/microorganisms9091797 . |
| [105] | SINGH H, CLARKE T, BRINKAC L, et al. Forensic microbiome database: A tool for forensic geolocation meta-analysis using publicly available 16S rRNA microbiome sequencing[J]. Front Microbiol,2021,12:644861. doi:10.3389/fmicb.2021.644861 . |
| [106] | ARORA N, MATIAS RODRIGUES J F, SWAYAMBHU M, et al. The Microbiome Forensics DatabaseUZH [J]. Forensic Sci Int Genet Suppl Ser,2022,8:181-184. doi:10.1016/j.fsigss.2022.10.028 . |
| [107] | 刘志勇,乌日嘎,李燃,等. 法医遗传学研究和鉴定中的伦理问题[J].遗传,2021,43(10):994-1002. doi:10.16288/j.yczz.21-202 . |
| LIU Z Y, WU R G, LI R, et al. Ethical issues of the research and practice in forensic genetics[J]. Yichuan,2021,43(10):994-1002. |
| [1] | 李成涛. 法医微生物组学的应用与挑战[J]. 法医学杂志, 2025, 41(5): 441-442. |
| [2] | 陈吉, 赵俞蓉, 黄馨, 屈轶龄, 路艳芳, 邢宇, 张晗, 曾建业, 李士林, 张素华. 温度对尸体不同组织微生物群落演替及死亡时间推断的影响[J]. 法医学杂志, 2025, 41(5): 456-467. |
| [3] | 邹后英, 雷印蕾, 夏若成, 施妍, 李成涛. 基于微生物组学污水中精神活性物质检测[J]. 法医学杂志, 2025, 41(5): 468-476. |
| [4] | 张晗, 黄馨, 陈安琪, 陈吉, 路艳芳, 曾建业, 王翔. 皮肤微生物组:拓展法医学证据维度及面临的挑战[J]. 法医学杂志, 2025, 41(5): 443-455. |
| [5] | 高妍, 陈芳, 夏文涛, 杨小萍, 王泽宇, 杨泽人, 刘霞, 盛延良. Chirp ABR的研究进展及其在法医学听力鉴定中的应用展望[J]. 法医学杂志, 2025, 41(4): 387-393. |
| [6] | 李文艳, 赵晋峰, 刘唯琛, 吕诗婧, 张佳欣, 张旭东, 尉志文, 贠克明, 张潮. 虫螨腈及其代谢物在大鼠体内的毒物代谢动力学[J]. 法医学杂志, 2025, 41(4): 380-387. |
| [7] | 韦丽霞, 刘波, 杨小圆, 张茜, 兰艺凤, 张潮, 贾娟, 张丹, 尉志文, 贠克明, 陈哲. 基于核酸适配体功能化氧化石墨烯荧光传感器检测氯胺酮及去甲氯胺酮[J]. 法医学杂志, 2025, 41(4): 326-339. |
| [8] | 李嘉豪, 凌江, 蔡子豪, 郑梓源, 丁艳君. 基于铜纳米酶和分子印迹技术的替来他明快速检测荧光探针开发[J]. 法医学杂志, 2025, 41(4): 355-363. |
| [9] | 郭紫雯, 邱天禹, 曹玥. 基于表面增强拉曼光谱与机器学习的依托咪酯及其结构类似物的快速鉴识[J]. 法医学杂志, 2025, 41(4): 364-370. |
| [10] | 何泰伸, 吕中将, 孙一铭, 李雨洋, 叶懿, 林瑶, 廖林川. 基于金纳米团簇-荧光素比率荧光探针的氰化物快速分析[J]. 法医学杂志, 2025, 41(4): 340-347. |
| [11] | 唐梦瑶, 黄博宇, 刘翠梅, 刘雪燕, 贾薇, 花镇东. 基于便携式质谱仪的依托咪酯及其类似物的快速筛查[J]. 法医学杂志, 2025, 41(4): 348-354. |
| [12] | 宝景春, 赵晶京, 李骄勇, 孟菁华, 王晓龙, 詹晓妮, 姚军, 吴旭. 法医从业者岗位胜任力评价模型的构建[J]. 法医学杂志, 2025, 41(4): 371-379. |
| [13] | 田一鸣, 严一博, 文迪, 施妍. 新型功能材料在新精神活性物质快速检测中的研究进展[J]. 法医学杂志, 2025, 41(4): 314-325. |
| [14] | 刘纤纤, 张涵, 张世宏. 苯中毒致再生障碍性贫血残疾等级评定1例[J]. 法医学杂志, 2025, 41(3): 289-291. |
| [15] | 廖琦, 刘永红, 焦英, 杨晓莹, 杨怡华, 刘翠梅, 高瑞霞. 台式低场核磁共振技术的发展及其在禁毒领域中的应用[J]. 法医学杂志, 2025, 41(3): 267-276. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||