法医学杂志 ›› 2025, Vol. 41 ›› Issue (5): 468-476.DOI: 10.12116/j.issn.1004-5619.2025.550803

• 法医微生物学专题 • 上一篇    

基于微生物组学污水中精神活性物质检测

邹后英1(), 雷印蕾2,3(), 夏若成2, 施妍2, 李成涛1,2,4()   

  1. 1.南方医科大学法医学院,广东 广州 510515
    2.司法鉴定科学研究院 上海市法医学重点实验室 司法部司法鉴定重点实验室 上海市司法鉴定专业技术服务平台,上海 200063
    3.遵义医科大学基础医学院,贵州 遵义 563000
    4.复旦大学法庭科学研究院,上海 200032
  • 收稿日期:2025-08-18 发布日期:2026-01-27 出版日期:2025-10-25
  • 通讯作者: 李成涛
  • 作者简介:邹后英(1998—),女,硕士研究生,主要从事法医遗传学研究;E-mail:zouhouyingnhy@163.com
    雷印蕾(1996—),女,博士研究生,主要从事法医遗传学研究;E-mail:leiyinlei0520@163.com
    第一联系人:邹后英和雷印蕾为共同第一作者
  • 基金资助:
    国家重点研发计划资助项目(2022YFC3302004)

Exploring Microbial Detection of Psychoactive Substances in Wastewater Based on Micobiome Analysis

Hou-ying ZOU1(), Yin-lei LEI2,3(), Ruo-cheng XIA2, Yan SHI2, Cheng-tao LI1,2,4()   

  1. 1.School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
    2.Shanghai Key Laboratory of Forensic Medicine, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China
    3.School of Preclinical Medicine of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
    4.Institute of Forensic Science, Fudan University, Shanghai 200032, China
  • Received:2025-08-18 Online:2026-01-27 Published:2025-10-25
  • Contact: Cheng-tao LI

摘要:

目的 利用细菌16S rRNA基因全长测序技术,联合液相色谱-串联质谱联用技术,探讨污水中微生物组在精神活性物质检测中的应用潜力。 方法 采用液相色谱-串联质谱联用技术对21份疑似含有精神活性物质的污水样本进行定性检测,根据检测结果将样本分为阳性组(含精神活性物质)和阴性组(不含精神活性物质)。通过细菌16S rRNA基因全长测序,对所有样本的细菌群落进行物种组成、α多样性(Shannon指数、Simpson指数)和β多样性(主坐标分析、非度量多维尺度分析)分析。通过线性判别分析效应大小筛选显著差异性细菌的操作分类单元(operational taxonomic unit, OTU),以及采用递归特征消除法(recursive feature elimination,RFE)迭代筛选得到的最佳OTU特征子集作为模型输入特征,构建随机森林预测模型。 结果 两组污水样本的细菌群落组成及结构存在显著差异,阳性组样本多样性高于阴性组。置换多元方差分析证实两组样本的β多样性差异具有统计学意义。两种特征构建的模型的预测准确率均为83.3%,ROC曲线下面积分别为0.89和0.83。 结论 基于污水细菌群落特征的分析方法与化学分析技术相结合,有望更全面地反映精神活性物质的存在情况。

关键词: 法医学, 微生物组学, 精神活性物质, 机器学习, 16S rRNA

Abstract:

Objective To explore the potential wastewater microbiome analysis for detecting psychoactive substances by using full-length 16S rRNA gene sequencing with liquid chromatography - tandem mass spectrometry (LC-MS/MS). Methods LC-MS/MS was used to qualitatively detect psychoactive substances in 21 wastewater samples suspected to contain such compunds. Based on the results, the samples were categorized into two groups: a positive group (containing psychoactive substances) and a negative group (free of psychoactive substances). Subsequently, bacterial communities in all samples were analyzed using full-length 16S rRNA gene sequencing. This analysis characterized the species composition, α diversity (Shannon and Simpson indices), and β-diversity (PCoA and NMDS). Significantly different operational taxonomic units (OTUs) were screened using linear discriminant analysis effect size (LEfSe), and optimal OTU features were iteratively selected via recursive feature elimination (RFE). A random forest prediction model was built with these two OTU subsets as input features. Results The composition and structure of the bacterial communities showed marked differences between the two groups. The sample diversity in the positive group was higher than that in the negative group. The permutational ultivariate analysis of variance (PERMANOVA) revealed a statistically significant difference in β-diversity between the two groups. Random Forest models achieved a prediction accuracy of 83.3%, with areas under the ROC curve of 0.89 and 0.83, respectively. Conclusion Integrating wastewater bacterial community analysis with chemical analysis techniques may provide a more comprehensive approach for monitering the presence of psychoactive substances.

Key words: forensic medicine, microbiomics, psychoactive substances, machine learning, 16S rRNA

中图分类号: