法医学杂志 ›› 2022, Vol. 38 ›› Issue (2): 267-279.DOI: 10.12116/j.issn.1004-5619.2020.500502
陶瑞旸1(), 董新宇1, 陈安琪1, 吕叶辉2, 张素华1(
), 李成涛1(
)
收稿日期:
2020-05-06
发布日期:
2022-04-25
出版日期:
2022-04-28
通讯作者:
张素华,李成涛
作者简介:
李成涛,男,研究员,博士研究生导师,主要从事法医遗传学研究;E-mail:lichengtaohla@163.com基金资助:
Rui-yang TAO1(), Xin-yu DONG1, An-qi CHEN1, Ye-hui LÜ2, Su-hua ZHANG1(
), Cheng-tao LI1(
)
Received:
2020-05-06
Online:
2022-04-25
Published:
2022-04-28
Contact:
Su-hua ZHANG,Cheng-tao LI
摘要:
近年来,越来越多的法医遗传学实验室着手应用大规模平行测序(massively parallel sequencing,MPS)技术,即二代测序(next-generation sequencing,NGS)技术,检测包括短串联重复序列(short tandem repeat,STR)和单核苷酸多态性(single nucleotide polymorphism,SNP)在内的常用法医学遗传标记,以及线粒体DNA(mitochondrial DNA,mtDNA)控制区或全序列和信使RNA(messenger RNA,mRNA)等,用于个体识别、亲缘关系鉴定、祖源推断和体液识别等法医学实践。其中,STR作为法医遗传学中使用范围最广的遗传标记,目前主要应用毛细管电泳(capillary electrophoresis,CE)平台检测。与该平台相比,MPS技术具有能够同时检测大量遗传标记、多样本并行检测、测得序列多态性使STR具有更高的分辨能力和系统效能等优势。然而,MPS检测技术花费较大,尚未有统一的使用规范,以及存在如何整合MPS-STR数据与现存CE-STR数据库等难题。本文总结了法医遗传学领域应用MPS技术进行STR遗传标记检测的研究现状,提出了目前亟待解决的主要问题,并对该技术在本领域中的应用前景进行了展望。
中图分类号:
陶瑞旸, 董新宇, 陈安琪, 吕叶辉, 张素华, 李成涛. 大规模平行测序技术在STR遗传标记检测中的应用进展[J]. 法医学杂志, 2022, 38(2): 267-279.
Rui-yang TAO, Xin-yu DONG, An-qi CHEN, Ye-hui LÜ, Su-hua ZHANG, Cheng-tao LI. Application Progress of Massively Parallel Sequencing Technology in STR Genetic Marker Detection[J]. Journal of Forensic Medicine, 2022, 38(2): 267-279.
1 | GOODWIN S, MCPHERSON J D, MCCOMBIE W R. Coming of age: Ten years of next-generation sequencing technologies[J]. Nat Rev Genet,2016,17(6):333-351. doi:10.1038/nrg.2016.49 . |
2 | BILICHAK A, SASTRY-DENT L, SRIRAM S, et al. Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cell-penetrating peptide complexes[J]. Plant Biotechnol J,2020,18(5):1307-1316. doi:10.1111/pbi.13296 . |
3 | NOELL K, KOLLS J K. Further defining the human virome using NGS: Identification of Redondoviridae [J]. Cell Host Microbe,2019,25(5):634-635. doi:10.1016/j.chom.2019.04.010 |
4 | PIPIS M, ROSSOR A M, LAURA M, et al. Next-generation sequencing in Charcot-Marie-Tooth disease: Opportunities and challenges[J]. Nat Rev Neurol,2019,15(11):644-656. doi:10.1038/s41582-019-0254-5 . |
5 | ISHIHARA T, WATANABE N, INOUE S, et al. Usefulness of next-generation DNA sequencing for the diagnosis of urinary tract infection[J]. Drug Discov Ther,2020,14(1):42-49. doi:10.5582/ddt.2020.01000 . |
6 | Conference volumes of the International Society for Forensic Genetics[EB/OL]. [2020-04-15]. . |
7 | FORDYCE S L, ÁVILA-ARCOS M C, ROCKEN-BAUER E, et al. High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform[J]. BioTechniques,2011,51(2):127-133. doi:10.2144/000113721 . |
8 | SCHEIBLE M, LOREILLE O, JUST R, et al. Short tandem repeat typing on the 454 platform: Strategies and considerations for targeted sequencing of common forensic markers[J]. Forensic Sci Int Genet,2014,12:107-119. doi:10.1016/j.fsigen.2014.04.010 . |
9 | BØRSTING C, MORLING N. Next generation sequencing and its applications in forensic genetics[J]. Forensic Sci Int Genet,2015,18:78-89. doi:10.1016/j.fsigen.2015.02.002 . |
10 | Ion GeneStudio S 5系统——NGS靶向基因测序[EB/OL]. [2020-04-15]. ——Targeted gene sequen-cing using NGS[EB/OL]. [2020-04-15]. . |
11 | Torrent Suite Software[EB/OL]. [2020-04-15]. . |
12 | 周密,张科,汪军. 二代测序试剂盒SNP位点遗传学参数和对比[J].法医学杂志,2018,34(3):242-247. doi:10.12116/j.issn.1004-5619.2018.03.005 . |
ZHOU M, ZHANG K, WANG J. Genetic parameters of SNP loci in next generation sequencing kits and their comparison[J]. Fayixue Zazhi,2018,34(3):242-247. | |
13 | AL-ASFI M, MCNEVIN D, MEHTA B, et al. Assessment of the Precision ID Ancestry Panel[J]. Int J Legal Med,2018,132(6):1581-1594. doi:10.1007/s00414-018-1785-9 . |
14 | Precision ID mtDNA Control Region Panel[EB/OL]. [2020-04-15]. . |
15 | PEREIRA V, LONGOBARDI A, BØRSTING C. Sequencing of mitochondrial genomes using the Precision ID mtDNA Whole Genome Panel[J]. Electrophoresis,2018,39(21):2766-2775. doi:10.1002/elps.201800088 . |
16 | Universal Analysis Software v 2.0 : Reference guide[EB/OL]. [2022-04-15]. . |
17 | ForenSeqTM DNA Signature Prep reference guide[EB/OL]. [2022-04-15]. . |
18 | BENTLEY D R, BALASUBRAMANIAN S, SWER-DLOW H P, et al. Accurate whole human genome sequencing using reversible terminator chemistry[J]. Nature,2008,456(7218):53-59. doi:10.1038/nature07517 . |
19 | 张素华,边英男,赵琪,等. 二代测序技术在法医学中的应用进展[J].法医学杂志,2016,32(4):282-289,295. doi:10.3969/j.issn.1004-5619.2016.04.012 . |
ZHANG S H, BIAN Y N, ZHAO Q, et al. Review of second generation sequencing and its application in forensic genetics[J]. Fayixue Zazhi,2016,32(4):282-289,295. | |
20 | LIU L, LI Y, LI S, et al. Comparison of next-generation sequencing systems[J]. J Biomed Biotechnol,2012,2012:251364. doi:10.1155/2012/251364 . |
21 | QUAIL M A, SMITH M, COUPLAND P, et al. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers[J]. BMC Genomics,2012,13:341. doi:10.1186/1471-2164-13-341 . |
22 | ROSS M G, RUSS C, COSTELLO M, et al. Characterizing and measuring bias in sequence data[J]. Genome Biol,2013,14(5):R51. doi:10.1186/gb-2013-14-5-r51 . |
23 | ForenSeq mtDNA Whole Genome Kit[EB/OL]. [2020-04-15]. . |
24 | ForenSeq mtDNA Control Region Kit[EB/OL]. [2020-04-15]. . |
25 | STORTS D R. Strengths and limitations of NGS for forensic DNA analysis[EB/OL]. [2020-04-15]. . |
26 | YUAN L, CHEN X, LIU Z, et al. Identification of the perpetrator among identical twins using next-generation sequencing technology: A case report[J]. Forensic Sci Int Genet,2020,44:102167. doi:10.1016/j.fsigen.2019.102167 . |
27 | CHEN M, ZHANG J, ZHAO J, et al. Comparison of CE- and MPS-based analyses of forensic markers in a single cell after whole genome amplification[J]. Forensic Sci Int Genet,2020,45:102211. doi:10.1016/j.fsigen.2019.102211 . |
28 | CHEN P, YIN C, LI Z, et al. Evaluation of the Microhaplotypes panel for DNA mixture analyses[J]. Forensic Sci Int Genet,2018,35:149-155. doi:10.1016/j.fsigen.2018.05.003 . |
29 | FRANCÉS-CUESTA C, DE LA CABA I, IDIGO-RAS P, et al. Whole-genome sequencing of Neisseria gonorrhoeae in a forensic transmission case[J]. Forensic Sci Int Genet,2019,42:141-146. doi:10.1016/j.fsigen.2019.07.003 . |
30 | FORDYCE S L, MOGENSEN H S, BØRSTING C, et al. Second-generation sequencing of forensic STRs using the Ion TorrentTM HID STR 10-plex and the Ion PGMTM [J]. Forensic Sci Int Genet,2015,14:132-140. doi:10.1016/j.fsigen.2014.09.020 . |
31 | GUO F, ZHOU Y, LIU F, et al. Evaluation of the Early Access STR Kit v1 on the Ion Torrent PGMTM platform[J]. Forensic Sci Int Genet,2016,23:111-120. doi:10.1016/j.fsigen.2016.04.004 . |
32 | WANG Z, ZHOU D, WANG H, et al. Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFilerTM NGS STR Panel and the Ion PGMTM System[J]. Forensic Sci Int Genet,2017,31:126-134. doi:10.1016/j.fsigen.2017.09.004 . |
33 | TAO R, QI W, CHEN C, et al. Pilot study for forensic evaluations of the Precision ID GlobalFilerTM NGS STR Panel v2 with the Ion S5TM System[J]. Forensic Sci Int Genet,2019,43:102147. doi:10.1016/j.fsigen.2019.102147 . |
34 | Technical note[EB/OL]. [2020-04-15]. . |
35 | ZENG X, KING J L, STOLJAROVA M, et al. High sensitivity multiplex short tandem repeat loci analyses with massively parallel sequencing[J]. Forensic Sci Int Genet,2015,16:38-47. doi:10.1016/j.fsigen.2014.11.022 . |
36 | ZENG X, KING J, HERMANSON S, et al. An evaluation of the PowerSeqTM Auto System: A multiplex short tandem repeat marker kit compatible with massively parallel sequencing[J]. Forensic Sci Int Genet,2015,19:172-179. doi:10.1016/j.fsigen.2015.07.015 . |
37 | MONTANO E A, BUSH J M, GARVER A M, et al. Optimization of the Promega PowerSeqTM Auto/Y System for efficient integration within a forensic DNA laboratory[J]. Forensic Sci Int Genet,2018,32:26-32. doi:10.1016/j.fsigen.2017.10.002 . |
38 | CHURCHILL J D, SCHMEDES S E, KING J L, et al. Evaluation of the Illumina Beta Version ForenSeqTM DNA Signature Prep Kit for use in genetic profiling[J]. Forensic Sci Int Genet,2016,20:20-29. doi:10.1016/j.fsigen.2015.09.009 . |
39 | GUO F, YU J, ZHANG L, et al. Massively parallel sequencing of forensic STRs and SNPs using the Illumina® ForenSeqTM DNA Signature Prep Kit on the MiSeq FGxTM Forensic Genomics System[J]. Forensic Sci Int Genet,2017,31:135-148. doi:10.1016/j.fsigen.2017.09.003 . |
40 | 屈轶龄,林源,杨子豪,等. ForenSeqTM DNA Signature Prep试剂盒在浙江畲族人群中的法医学应用[J].法医学杂志,2021,37(6):817-824. doi:10.12116/j.issn.1004-5619.2021.510404 . |
QU Y L, LIN Y, YANG Z H, et al. Forensic application of ForenSeqTM DNA Signature Prep kit in Zhengjiang She ethnic group[J]. Fayixue Zazhi,2021,37(6):817-824. | |
41 | XAVIER C, PARSON W. Evaluation of the Illumina ForenSeqTM DNA Signature Prep Kit - MPS forensic application for the MiSeq FGxTM benchtop sequencer[J]. Forensic Sci Int Genet,2017,28:188-194. doi:10.1016/j.fsigen.2017.02.018 . |
42 | DEVESSE L, BALLARD D, DAVENPORT L, et al. Concordance of the ForenSeqTM system and characterisation of sequence-specific autosomal STR alleles across two major population groups[J]. Forensic Sci Int Genet,2018,34:57-61. doi:10.1016/j.fsigen.2017.10.012 . |
43 | KÖCHER S, MÜLLER P, BERGER B, et al. Inter-laboratory validation study of the ForenSeqTM DNA Signature Prep Kit[J]. Forensic Sci Int Genet,2018,36:77-85. doi:10.1016/j.fsigen.2018.05.007 . |
44 | ZHAO X, LI H, WANG Z, et al. Massively parallel sequencing of 10 autosomal STRs in Chinese using the ion torrent personal genome machine (PGM)[J]. Forensic Sci Int Genet,2016,25:34-38. doi:10.1016/j.fsigen.2016.07.014 . |
45 | ZHAO X, MA K, LI H, et al. Multiplex Y-STRs analysis using the ion torrent personal genome machine (PGM)[J]. Forensic Sci Int Genet,2015,19:192-196. doi:10.1016/j.fsigen.2015.06.012 . |
46 | KIM E H, LEE H Y, KWON S Y, et al. Sequence-based diversity of 23 autosomal STR loci in Koreans investigated using an in-house massively parallel sequencing panel[J]. Forensic Sci Int Genet,2017,30:134-140. doi:10.1016/j.fsigen.2017.07.001 . |
47 | KWON S Y, LEE H Y, KIM E H, et al. Investigation into the sequence structure of 23 Y chromosomal STR loci using massively parallel sequencing[J]. Forensic Sci Int Genet,2016,25:132-141. doi:10.1016/j.fsigen.2016.08.010 . |
48 | ConvergeTM Software[EB/OL]. [2020-04-15]. . |
49 | STRinNGS version 2.0[EB/OL]. [2020-04-15]. . |
50 | HOOGENBOOM J, VAN DER GAAG K J, DE LEEUW R H, et al. FDSTools: A software package for analysis of massively parallel sequencing data with the ability to recognise and correct STR stutter and other PCR or sequencing noise[J]. Forensic Sci Int Genet,2017,27:27-40. doi:10.1016/j.fsigen.2016.11.007 . |
51 | GYMREK M, GOLAN D, ROSSET S, et al. lobSTR: A short tandem repeat profiler for personal genomes[J]. Genome Res,2012,22(6):1154-1162. doi:10.1101/gr.135780.111 . |
52 | VAN NESTE C, VANDEWOESTYNE M, VAN CRIEKINGE W, et al. My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing[J]. Forensic Sci Int Genet,2014,9:1-8. doi:10.1016/j.fsigen.2013.10.012 . |
53 | VAN NESTE C, GANSEMANS Y, DE CONINCK D, et al. Forensic massively parallel sequencing data analysis tool: Implementation of MyFLq as a standalone web- and Illumina BaseSpace®-application[J]. Forensic Sci Int Genet,2015,15:2-7. doi:10.1016/j.fsigen.2014.10.006 . |
54 | HIGHNAM G, FRANCK C, MARTIN A, et al. Accurate human microsatellite genotypes from high-throughput resequencing data using informed error profiles[J]. Nucleic Acids Res,2013,41(1):e32. doi:10.1093/nar/gks981 . |
55 | LEE J C, TSENG B, CHANG L K, et al. SEQ Mapper: A DNA sequence searching tool for massively parallel sequencing data[J]. Forensic Sci Int Genet,2017,26:66-69. doi:10.1016/j.fsigen.2016.10.006 . |
56 | WOERNER A E, KING J L, BUDOWLE B. Fast STR allele identification with STRait Razor 3.0[J]. Forensic Sci Int Genet,2017,30:18-23. doi:10.1016/j.fsigen.2017.05.008 . |
57 | WANG D, TAO R, LI Z, et al. STRsearch: A new pipeline for targeted profiling of short tandem repeats in massively parallel sequencing data[J]. Hereditas,2020,157(1):8. doi:10.1186/s41065-020-00120-6 . |
58 | CAO M D, TASKER E, WILLADSEN K, et al. Inferring short tandem repeat variation from paired-end short reads[J]. Nucleic Acids Res,2014,42(3):e16. doi:10.1093/nar/gkt1313 . |
59 | GANSCHOW S, SILVERY J, KALINOWSKI J, et al. toaSTR: A web application for forensic STR genotyping by massively parallel sequencing[J]. Forensic Sci Int Genet,2018,37:21-28. doi:10.1016/j.fsigen.2018.07.006 . |
60 | ANVAR S Y, VAN DER GAAG K J, VAN DER HEIJDEN J W F, et al. TSSV: A tool for characterization of complex allelic variants in pure and mixed genomes[J]. Bioinformatics,2014,30(12):1651-1659. doi:10.1093/bioinformatics/btu068 . |
61 | PARSON W, BALLARD D, BUDOWLE B, et al. Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements[J]. Forensic Sci Int Genet,2016,22:54-63. doi:10.1016/j.fsigen.2016.01.009 . |
62 | PHILLIPS C, GETTINGS K B, KING J L, et al. “The devil’s in the detail”: Release of an expanded, enhanced and dynamically revised forensic STR Sequence Guide[J]. Forensic Sci Int Genet,2018,34:162-169. doi:10.1016/j.fsigen.2018.02.017 . |
63 | GUSMÃO L, BUTLER J M, LINACRE A, et al. Revised guidelines for the publication of genetic population data[J]. Forensic Sci Int Genet,2017,30:160-163. doi:10.1016/j.fsigen.2017.06.007 . |
64 | GETTINGS K B, BORSUK L A, BALLARD D, et al. STRSeq: A catalog of sequence diversity at human identification Short Tandem Repeat loci[J]. Forensic Sci Int Genet,2017,31:111-117. doi:10.1016/j.fsigen.2017.08.017 . |
65 | PHILLIPS C, DEVESSE L, BALLARD D, et al. Global patterns of STR sequence variation: Sequencing the CEPH human genome diversity panel for 58 forensic STRs using the Illumina ForenSeq DNA Signature Prep Kit[J]. Electrophoresis,2018,39(21):2708-2724. doi:10.1002/elps.201800117 . |
66 | WANG Z, WANG L, LIU J, et al. Characterization of sequence variation at 30 autosomal STRs in Chinese Han and Tibetan populations[J]. Electrophoresis,2020,41(3/4):194-201. doi:10.1002/elps.201900278 . |
67 | BARRIO P A, MARTÍN P, ALONSO A, et al. Massively parallel sequence data of 31 autosomal STR loci from 496 Spanish individuals revealed concordance with CE-STR technology and enhanced discrimination power[J]. Forensic Sci Int Genet,2019,42:49-55. doi:10.1016/j.fsigen.2019.06.009 . |
68 | XUE J, WU R, PAN Y, et al. Integrated massively parallel sequencing of 15 autosomal STRs and Amelogenin using a simplified library preparation approach[J]. Electrophoresis,2018,39(12):1466-1473. doi:10.1002/elps.201700429 . |
69 | DAI W, PAN Y, SUN X, et al. High polymorphism detected by massively parallel sequencing of autosomal STRs using old blood samples from a Chinese Han population[J]. Sci Rep,2019,9(1):18959. doi:10.1038/s41598-019-55282-9 . |
70 | KHUBRANI Y M, HALLAST P, JOBLING M A, et al. Massively parallel sequencing of autosomal STRs and identity-informative SNPs highlights consanguinity in Saudi Arabia[J]. Forensic Sci Int Genet,2019,43:102164. doi:10.1016/j.fsigen.2019.102164 . |
71 | WU J, LI J L, WANG M L, et al. Evaluation of the MiSeq FGx system for use in forensic casework[J]. Int J Legal Med,2019,133(3):689-697. doi:10.1007/s00414-018-01987-x . |
72 | HWA H L, WU M Y, CHUNG W C, et al. Massively parallel sequencing analysis of nondegraded and degraded DNA mixtures using the ForenSeqTM system in combination with EuroForMix software[J]. Int J Legal Med,2019,133(1):25-37. doi:10.1007/s00414-018-1961-y . |
73 | HUSSING C, BYTYCI R, HUBER C, et al. The Danish STR sequence database: Duplicate typing of 363 Danes with the ForenSeqTM DNA Signature Prep Kit[J]. Int J Legal Med,2019,133(2):325-334. doi:10.1007/s00414-018-1854-0 . |
74 | SALVADOR J M, APAGA D L T, DELFIN F C, et al. Filipino DNA variation at 12 X-chromosome short tandem repeat markers[J]. Forensic Sci Int Genet,2018,36:e8-e12. doi:10.1016/j.fsigen.2018.06.008 . |
75 | KIM S Y, LEE H C, CHUNG U, et al. Massive parallel sequencing of short tandem repeats in the Korean population[J]. Electrophoresis,2018,39(21):2702-2707. doi:10.1002/elps.201800090 . |
76 | GETTINGS K B, BORSUK L A, STEFFEN C R, et al. Sequence-based U.S. population data for 27 autosomal STR loci[J]. Forensic Sci Int Genet,2018,37:106-115. doi:10.1016/j.fsigen.2018.07.013 . |
77 | BORSUK L A, GETTINGS K B, STEFFEN C R, et al. Sequence-based US population data for the SE33 locus[J]. Electrophoresis,2018,39(21):2694-2701. doi:10.1002/elps.201800091 . |
78 | CASALS F, ANGLADA R, BONET N, et al. Length and repeat-sequence variation in 58 STRs and 94 SNPs in two Spanish populations[J]. Forensic Sci Int Genet,2017,30:66-70. doi:10.1016/j.fsigen.2017.06.006 . |
79 | WENDT F R, KING J L, NOVROSKI N M M, et al. Flanking region variation of ForenSeqTM DNA Signature Prep Kit STR and SNP loci in Yavapai Native Americans[J]. Forensic Sci Int Genet,2017,28:146-154. doi:10.1016/j.fsigen.2017.02.014 . |
80 | WENDT F R, CHURCHILL J D, NOVROSKI N M M, et al. Genetic analysis of the Yavapai Native Americans from West-Central Arizona using the Illumina MiSeq FGxTM Forensic Genomics System[J]. Forensic Sci Int Genet,2016,24:18-23. doi:10.1016/j.fsigen.2016.05.008 . |
81 | NOVROSKI N M M, KING J L, CHURCHILL J D, et al. Characterization of genetic sequence variation of 58 STR loci in four major population groups[J]. Forensic Sci Int Genet,2016,25:214-226. doi:10.1016/j.fsigen.2016.09.007 . |
82 | HUSZAR T I, JOBLING M A, WETTON J H. A phylogenetic framework facilitates Y-STR variant discovery and classification via massively parallel sequencing[J]. Forensic Sci Int Genet,2018,35:97-106. doi:10.1016/j.fsigen.2018.03.012 . |
83 | SILVA D S B S, SAWITZKI F R, SCHEIBLE M K R, et al. Genetic analysis of Southern Brazil subjects using the PowerSeqTM AUTO/Y System for short tandem repeat sequencing[J]. Forensic Sci Int Genet,2018,33:129-135. doi:10.1016/j.fsigen.2017.12.008 . |
84 | VAN DER GAAG K J, DE LEEUW R H, HOOGENBOOM J, et al. Massively parallel sequencing of short tandem repeats -- Population data and mixture analysis results for the PowerSeqTM system[J]. Forensic Sci Int Genet,2016,24:86-96. doi:10.1016/j.fsigen.2016.05.016 . |
85 | GETTINGS K B, KIESLER K M, FAITH S A, et al. Sequence variation of 22 autosomal STR loci detected by next generation sequencing[J]. Forensic Sci Int Genet,2016,21:15-21. doi:10.1016/j.fsigen.2015.11.005 . |
86 | WARSHAUER D H, CHURCHILL J D, NOVRO-SKI N, et al. Novel Y-chromosome short tandem repeat variants detected through the use of massively parallel sequencing[J]. Genomics Proteomics Bioinformatics,2015,13(4):250-257. doi:10.1016/j.gpb.2015.08.001 . |
87 | JOBLING M A, GILL P. Encoded evidence: DNA in forensic analysis[J]. Nat Rev Genet,2004,5(10):739-751. doi:10.1038/nrg1455 . |
88 | YOUNG B, FARIS T, ARMOGIDA L. A nomenclature for sequence-based forensic DNA analysis[J]. Forensic Sci Int Genet,2019,42:14-20. doi:10.1016/j.fsigen.2019.06.001 . |
89 | JUST R S, IRWIN J A. Use of the LUS in sequence allele designations to facilitate probabilistic genotyping of NGS-based STR typing results[J]. Forensic Sci Int Genet,2018,34:197-205. doi:10.1016/j.fsigen.2018.02.016 . |
90 | BLEKA Ø, STORVIK G, GILL P. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts[J]. Forensic Sci Int Genet,2016,21:35-44. doi:10.1016/j.fsigen.2015.11.008 . |
91 | GETTINGS K B, BALLARD D, BODNER M, et al. Report from the STRAND Working Group on the 2019 STR sequence nomenclature meeting[J]. Forensic Sci Int Genet,2019,43:102165. doi:10.1016/j.fsigen.2019.102165 . |
92 | WILLUWEIT S. Challenges and paradigm shifts by the adoption of MPS in forensic casework. Lessons learned from the collaborative DNASeqEx Project so far[EB/OL]. [2022-04-15]. . |
93 | Nomenclature for Factors of the HLA System[EB/OL]. [2020-04-15]. . |
[1] | 陶瑞旸, 王守宇, 袁春艳, 夏若成, 李成涛. 应用SNaPshot技术检测精液特异性cSNP遗传标记[J]. 法医学杂志, 2023, 39(5): 465-470. |
[2] | 李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500. |
[3] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[4] | 张琦, 赵禾苗, 杨康, 陈静, 杨瑞琴, 王冲. 利用朴素贝叶斯和多元logistic回归构建月经血mRNA标志分析模型[J]. 法医学杂志, 2023, 39(5): 447-451. |
[5] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[6] | 曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477. |
[7] | 郭科建, 黄磊, 李士林, 殷才湧, 汤真. 山东汉族人群37个Y-STR基因座多态性与突变调查[J]. 法医学杂志, 2023, 39(5): 501-506. |
[8] | 杨乐, 丛欣, 陈冲, 贾莉, 李惠芬, 马云龙, 石妍. 应用多种遗传标记鉴定疑似父子关系的全同胞关系1例[J]. 法医学杂志, 2023, 39(4): 424-427. |
[9] | 范飞, 武娟, 邓振华. 听力学客观检测技术在法医临床学中的应用进展[J]. 法医学杂志, 2023, 39(4): 360-366. |
[10] | 向青青, 陈立方, 苏秦, 杜宇坤, 梁沛妍, 康晓东, 石河, 徐曲毅, 赵建, 刘超, 陈晓晖. 微生物群落演替在死亡时间推断中的研究进展[J]. 法医学杂志, 2023, 39(4): 399-405. |
[11] | 曹宇奇, 施妍, 向平, 郭寅龙. 机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进展[J]. 法医学杂志, 2023, 39(4): 406-416. |
[12] | 蒋志霞, 毛小慧, 衡素景. 母亲参与的姑侄亲缘关系鉴定1例[J]. 法医学杂志, 2023, 39(3): 326-328. |
[13] | 白雪, 马冠车, 付丽红, 李淑瑾, 张晓静. 生父性侵女儿法医学鉴定1例[J]. 法医学杂志, 2023, 39(3): 308-311. |
[14] | 臧钰, 李燃, 陈海英, 杨静怡, 乌日嘎, 孙宏钰. 应用法医系谱学鉴定寻亲案件1例[J]. 法医学杂志, 2023, 39(3): 323-325. |
[15] | 任贺, 刘志勇, 石妍, 陈冲, 贾莉, 陈滢, 刘雅诚, 严江伟. 强奸致孕形成完全性葡萄胎亲子鉴定2例[J]. 法医学杂志, 2023, 39(3): 315-318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||