法医学杂志 ›› 2023, Vol. 39 ›› Issue (5): 471-477.DOI: 10.12116/j.issn.1004-5619.2021.411103
曾勇1,2(), 邹冬华2,3, 范颖2,3, 徐晴4, 陶陆阳1, 陈忆九2(), 李正东2()
收稿日期:
2021-11-01
发布日期:
2023-11-24
出版日期:
2023-10-25
通讯作者:
陈忆九,李正东
作者简介:
李正东,男,助理研究员,主要从事法医病理学研究;E-mail:lzdadv@163.com基金资助:
Yong ZENG1,2(), Dong-hua ZOU2,3, Ying FAN2,3, Qing XU4, Lu-yang TAO1, Yi-jiu CHEN2(), Zheng-dong LI2()
Received:
2021-11-01
Online:
2023-11-24
Published:
2023-10-25
Contact:
Yi-jiu CHEN,Zheng-dong LI
摘要:
有限元法是求解工程问题近似解的一种数学方法,随着计算机技术的发展,已广泛应用于人体生物力学研究。将有限元法和生物力学技术应用于法医学血管损伤与疾病的关系以及病理机制探索是传统法医学的一次技术革新。本文综述了人体血管有限元模型的构建、发展历程及其在血管生物力学的研究进展,对其在法医病理学中的应用前景进行展望。
中图分类号:
曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477.
Yong ZENG, Dong-hua ZOU, Ying FAN, Qing XU, Lu-yang TAO, Yi-jiu CHEN, Zheng-dong LI. Research Progress and Forensic Application of Human Vascular Finite Element Modeling and Biomechanics[J]. Journal of Forensic Medicine, 2023, 39(5): 471-477.
部位 | 有限元软件 | 单元数量 | 材料模型 | 材料属性 | 参考文献 |
---|---|---|---|---|---|
主动脉弓 | LS-DYNA | 7 355个四面体单元 (4 281个节点) | Blatz-Ko模型 | ρs=1.00 g/cm3、G=10 MPa、 E=1.0 MPa、γ=0.45 | [ |
颈总动脉 | LS-DYNA | 28 196个六面体单元 | Mooney-Rivlin模型 | ρs=1.00 g/cm3、K=2.71×103、 γ=5.20、E=0.236 N/mm2 | [ |
全主动脉 | ANSYS | - | Ogden模型 | ρs=1.00 g/cm3、η=0.004 Pa?s | [ |
主动脉弓 | ANSYS | 14 707个四面体单元 | - | E=3 MPa、γ=0.49 | [ |
主动脉弓 | ABAQUS | 18 000~20 000个三角形单位(9 000~10 000个节点) | - | E=3 MPa、γ=0.46 | [ |
腹主动脉 | BioDyn | 2 000 000~2 500 000个四面体单元 | Ogden模型 | ρs=1.05 g/cm3 | [ |
全主动脉 | ANSYS | - | - | ρs=1.03 g/cm3、η=0.003 5 Pa?s、 壁面密度=2.0×103 kg/m3、 E=1.08 MPa、γ=0.45 | [ |
腹主动脉 | ANSYS | 146 858个六面体单元 | 超弹性模型 | ρs=2.0 g/cm3、E=0.352 9 MPa、 η=0.003 5 Pa?s、γ=0.45 | [ |
腹主动脉 | COMSOL | 13 832个域单元,9 324个边界单元,1 035个边单元 | - | ρs=1.121 g/cm3、E=2.7 MPa、 γ=0.45 | [ |
全主动脉 | LS-DYNA | - | 线弹性模型 | ρs=1.20 g/cm3、E=8.87 MPa、 γ=0.4 | [ |
腹主动脉 | LS-DYNA | 49 920个六面体单元、 137 052个四面体单元 | Ogden-Holzapfel 模型 | ρs=1.05 g/cm3、K=2.4 GPa | [ |
冠状动脉 | ANSYS | 2 202 803个四面体单元 (424 228个节点) | - | ρs=1.06 g/cm3、η=0.003 7 Pa?s | [ |
全主动脉 | LS-DYNA | - | 黏弹性模型 | ρs=1.20 g/cm3、E=0.5 MPa、γ=0.4 | [ |
全主动脉 | LS-DYNA | 12 296个四面体单元 | 超弹性模型 | ρs=1.05 g/cm3、η=0.004 5 Pa?s、 K=2.5 GPa | [ |
全主动脉 | LS-DYNA | 4 118个四面体单元 (1 310个节点) | Ogden模型 | ρs=1.2 g/cm3、E=1 000 kPa、 γ=0.45、G=(137±18) kPa | [ |
表1 动脉有限元模型的部分基本参数
Tab. 1 Material parameters of some arterial finite element models
部位 | 有限元软件 | 单元数量 | 材料模型 | 材料属性 | 参考文献 |
---|---|---|---|---|---|
主动脉弓 | LS-DYNA | 7 355个四面体单元 (4 281个节点) | Blatz-Ko模型 | ρs=1.00 g/cm3、G=10 MPa、 E=1.0 MPa、γ=0.45 | [ |
颈总动脉 | LS-DYNA | 28 196个六面体单元 | Mooney-Rivlin模型 | ρs=1.00 g/cm3、K=2.71×103、 γ=5.20、E=0.236 N/mm2 | [ |
全主动脉 | ANSYS | - | Ogden模型 | ρs=1.00 g/cm3、η=0.004 Pa?s | [ |
主动脉弓 | ANSYS | 14 707个四面体单元 | - | E=3 MPa、γ=0.49 | [ |
主动脉弓 | ABAQUS | 18 000~20 000个三角形单位(9 000~10 000个节点) | - | E=3 MPa、γ=0.46 | [ |
腹主动脉 | BioDyn | 2 000 000~2 500 000个四面体单元 | Ogden模型 | ρs=1.05 g/cm3 | [ |
全主动脉 | ANSYS | - | - | ρs=1.03 g/cm3、η=0.003 5 Pa?s、 壁面密度=2.0×103 kg/m3、 E=1.08 MPa、γ=0.45 | [ |
腹主动脉 | ANSYS | 146 858个六面体单元 | 超弹性模型 | ρs=2.0 g/cm3、E=0.352 9 MPa、 η=0.003 5 Pa?s、γ=0.45 | [ |
腹主动脉 | COMSOL | 13 832个域单元,9 324个边界单元,1 035个边单元 | - | ρs=1.121 g/cm3、E=2.7 MPa、 γ=0.45 | [ |
全主动脉 | LS-DYNA | - | 线弹性模型 | ρs=1.20 g/cm3、E=8.87 MPa、 γ=0.4 | [ |
腹主动脉 | LS-DYNA | 49 920个六面体单元、 137 052个四面体单元 | Ogden-Holzapfel 模型 | ρs=1.05 g/cm3、K=2.4 GPa | [ |
冠状动脉 | ANSYS | 2 202 803个四面体单元 (424 228个节点) | - | ρs=1.06 g/cm3、η=0.003 7 Pa?s | [ |
全主动脉 | LS-DYNA | - | 黏弹性模型 | ρs=1.20 g/cm3、E=0.5 MPa、γ=0.4 | [ |
全主动脉 | LS-DYNA | 12 296个四面体单元 | 超弹性模型 | ρs=1.05 g/cm3、η=0.004 5 Pa?s、 K=2.5 GPa | [ |
全主动脉 | LS-DYNA | 4 118个四面体单元 (1 310个节点) | Ogden模型 | ρs=1.2 g/cm3、E=1 000 kPa、 γ=0.45、G=(137±18) kPa | [ |
1 | STALLMEYER B, SCHULZE-BAHR E. Cardiovascular disease and sudden cardiac death: Between genetics and genomics[J]. Eur Heart J,2015,36(26):1643-1645. doi:10.1093/eurheartj/ehv173 . |
2 | 韩同伟,张春辉. 心脏性猝死,中国防治任务艰巨而繁重——访中国医学科学院阜外心血管病医院心脏内科华伟教授[J].中国医药导报,2010,7(14):2-3. doi:10.3969/j.issn.1673-7210.2010.14.002 . |
HAN T W, ZHANG C H. Sudden cardiac death, China’s prevention and treatment task is arduous and arduous -- Interview with Professor Hua Wei, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences[J]. Zhongguo Yiyao Daobao,2010,7(14):2-3. | |
3 | 闵建雄. 法医损伤学[M].北京:中国人民公安大学出版社,2010:207-214. |
MIN J X. Forensic traumatology[M]. Beijing: Chinese Public Security University Press,2010:207-214. | |
4 | 陈忆九. 虚拟解剖技术的应用研究进展[J].法医学杂志,2014,30(5):360-366. doi:10.3969/j.issn.1004-5619.2014.05.012 . |
CHEN Y J. Research development and application of virtopsy[J]. Fayixue Zazhi,2014,30(5):360-366. | |
5 | RUDER T D, HATCH G M, THALI M J, et al. One small scan for radiology, one giant leap for forensic medicine -- Post-mortem imaging replaces forensic autopsy in a case of traumatic aortic laceration[J]. Leg Med,2011,13(1):41-43. doi:10.1016/j.legalmed. 2010.10.003 . |
6 | PHAN P K, VO A T N, BAKHTIARYDAVIJANI A, et al. In silico finite element analysis of the foot ankle complex biomechanics: A literature review[J]. J Biomech Eng,2021,143(9):090802. doi:10.1115/1.4050667 . |
7 | DEVARAJ A K, ACHARYA K K V, ADHIKARI R. Experimental and finite element investigations on the biomechanical effects of meniscal tears in the knee joint: A review[J]. J Biomim Biomater Biomed Eng,2021,50:1-14. doi:10.4028/www.scientific.net/jbbbe.50.1 . |
8 | 金山,冯雨欣,王玥涵,等. 医学有限元仿真实验系统研究[J].软件,2020,41(9):72-75. doi:10.3969/j.issn.1003-6970.2020.09.020 . |
JIN S, FENG Y X, WANG Y H, et al. Computer biomechanical modeling and simulation experimental system and its medical application research[J]. Ruanjian,2020,41(9):72-75. | |
9 | 崔红新,程方荣,王健智. 有限元法及其在生物力学中的应用[J].中医正骨,2005,17(1):53-55. doi:10.3969/j.issn.1001-6015.2005.01.047 . |
CUI H X, CHENG F R, WANG J Z. Finite element method and its application in biomechanics[J]. Zhong-yi Zhenggu,2005,17(1):53-55. | |
10 | RAUL J S, DECK C, WILLINGER R, et al. Finite-element models of the human head and their applications in forensic practice[J]. Int J Legal Med,2008,122(5):359-366. doi:10.1007/s00414-008-0248-0 . |
11 | MARGULIES S S, THIBAULT K L. Infant skull and suture properties: Measurements and implications for mechanisms of pediatric brain injury[J]. J Biomech Eng,2000,122(4):364-371. doi:10.1115/1.1287160 . |
12 | 李正东,邹冬华,刘宁国,等. 人体骨盆有限元模型的建立及其在法医学鉴定中的应用价值[J].法医学杂志,2010,26(6):406-412. doi:10.3969/j.issn.1004-5619.2010.06.002 . |
LI Z D, ZOU D H, LIU N G, et al. The finite element modeling of human pelvis and its application in medicolegal expertise[J]. Fayixue Zazhi,2010,26(6):406-412. | |
13 | DAVIDS N, MANI M K. Effects of turbulence on blood flow explored by finite element analysis[J]. Comput Biol Med,1972,2(4):311-319. doi:10.1016/0010-4825(72)90018-2 . |
14 | DAVIDS N, MANI M K. A finite element analysis of endothelial shear stress for pulsatile blood flow[J]. Biorheology,1974,11(2):137-147. doi:10.3233/bir-1974-11205 . |
15 | MOHAN D, MELVIN J W. Failure properties of passive human aortic tissue. Ⅱ -- Biaxial tension tests[J]. J Biomech,1983,16(1):31-44. doi:10.1016/0021-9290(83)90044-1 . |
16 | TAYLOR C A, HUGHES T J, ZARINS C K. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: Relevance to atherosclerosis[J]. Ann Biomed Eng,1998,26(6):975-987. doi:10.11 14/1.140 . |
17 | CUI Z Y, FAMAEY N, DEPREITERE B, et al. On the assessment of bridging vein rupture associated acute subdural hematoma through finite element analysis[J]. Comput Methods Biomech Biomed Engin,2017,20(5):530-539. doi:10.1080/10255842. 2016.1255942 . |
18 | RICHENS D, FIELD M, HASHIM S, et al. A finite element model of blunt traumatic aortic rupture[J]. Eur J Cardiothorac Surg,2004,25(6):1039-1047. doi:10.1016/j.ejcts.2004.01.059 . |
19 | GAYZIK F S, BOSTROM O, ORTENWALL P, et al. An experimental and computational study of blunt carotid artery injury[J]. Annu Proc Assoc Adv Automot Med,2006,50:13-32. |
20 | LEE S H, KENT R. Blood flow and fluid-structure interactions in the human aorta during traumatic rupture conditions[J]. Stapp Car Crash J,2007,51:211-233. doi:10.4271/2007-22-0010 . |
21 | BELLER C J, LABROSSE M R, THUBRIKAR M J, et al. Finite element modeling of the thoracic aorta: Including aortic root motion to evaluate the risk of aortic dissection[J]. J Med Eng Technol,2008,32(2):167-170. doi:10.1080/0309190060068 7672 . |
22 | NATHAN D P, XU C, GORMAN J H, et al. Pathogenesis of acute aortic dissection: A finite element stress analysis[J]. Ann Thorac Surg,2011,91(2):458-463. doi:10.1016/j.athoracsur.2010.10.042 . |
23 | SOUDAH E, NG E Y, LOONG T H, et al. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT[J]. Comput Math Methods Med,2013,2013:472564. doi:10.1155/2013/472564 . |
24 | 初博,乔爱科. 搭桥术治疗DeBakey Ⅲ型主动脉夹层的流固耦合数值模拟[J].医用生物力学,2012,27(4):386-391. doi:10.16156/j.1004-7220.2012.04.012 . |
CHU B, QIAO A K. Fluid-structure interaction numerical simulation of bypassed DeBakey Ⅲ aortic dissection[J]. Yiyong Shengwu Lixue,2012,27(4):386-391. | |
25 | 池繁武. 腹主动脉瘤的有限元分析[D].广州:暨南大学,2015. |
CHI F W. The finite element analysis of abdominal aortic aneurysm[D]. Guangzhou: Jinan University,2015. | |
26 | 蒋之森,袁丁,庞霖. 腹主动脉瘤生长过程的蠕变力学模型[J].生物化学与生物物理进展,2016,43(5):523-531. doi:10.16476/j.pibb.2015.0332 . |
JIANG Z S, YUAN D, PANG L. Creep model of the growth of abdominal aortic aneurysm[J]. Shengwu Huaxue Yu Shengwu Wuli Jinzhan,2016,43(5):523-531. | |
27 | KERMANI G, ASSARI S, HEMMASIZADEH A, et al. Characterizing the inhomogeneity of aorta mechanical properties and its effect on the prediction of injury[EB/OL].(2016-10-10)[2021-10-25]. . |
28 | SHARZEHEE M, KHALAFVAND S S, HAN H C. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: A stability analysis[J]. Comput Methods Biomech Biomed Eng,2018,21(3):219-231. doi:10.1080/10255842.2018.1439478 . |
29 | 段晓杰,左瑞雪,汪剑鸣,等. 基于计算流体动力学的主动脉内血流仿真[J].计算机仿真,2019,36(9):236-239. doi:10.3969/j.issn.1006-9348.2019.09.048 . |
DUAN X J, ZUO R X, WANG J M, et al. Simulation of hemodynamic environment based on computational fluid dynamics[J]. Jisuanji Fangzhen,2019,36(9):236-239. | |
30 | MA Z W, JING L L, JIANG L B. Development and validation of an occupant biomechanical model for the aortic injury analysis under side impacts[J]. MATEC Web Conf,2019,256:01001. doi:10.1051/matecconf/201925601001 . |
31 | WEI W, EVIN M, RAPACCHI S, et al. Investigating heartbeat-related in-plane motion and stress levels induced at the aortic root[J]. Biomed Eng Online,2019,18(1):19. doi:10.1186/s12938-019-0632-7 . |
32 | GRAVE-CAPISTRÁN M A, PRIETO-VÁZQUEZ A Y, TORRES-SANMIGUEL C R. Aortic blunt trauma analysis during a frontal impact[J]. Appl Bionics Biomech,2021,2021:5555218. doi:10.1155/2021/5555218 . |
33 | DANIELSEN K V, WIESE S, HOVE J, et al. Pronounced coronary arteriosclerosis in cirrhosis: Influence on cardiac function and survival?[J]. Dig Dis Sci,2018,63(5):1355-1362. doi:10.1007/s10620-018-5006-7 . |
34 | WU H C, CHEN S Y, SHROFF S G, et al. Stress analysis using anatomically realistic coronary tree[J]. Med Phys,2003,30(11):2927-2936. doi:10.1118/1.1593635 . |
35 | KARIMI A, NAVIDBAKHSH M, FAGHIHI S, et al. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries[J]. Proc Inst Mech Eng H,2013,227(2):148-161. doi:10.1177/0954411912461239 . |
36 | 马燕山,谢英花,张会芬,等. 局部狭窄股动脉的血流变化分析[J].解剖学杂志,2013,36(5):945-947. doi:10.3969/j.issn.1001-1633.2013.05.020 . |
MA Y S, XIE Y H, ZHANG H F, et al. Fluid dynamic analysis of fluid-structure interaction in narrow femoral artery[J]. Jiepouxue Zazhi,2013,36(5):945-947. | |
37 | 张振,齐麟,李伟,等. 脑动脉瘤形成与破裂相关因素的研究进展[J].医药论坛杂志,2020,41(8):175-177. |
ZHANG Z, QI L, LI W, et al. Research progress on factors related to cerebral aneurysm formation and rupture[J]. Yiyao Luntan Zazhi,2020,41(8):175-177. | |
38 | RAGHAVAN M L, VORP D A. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability[J]. J Biomech,2000,33(4):475-482. doi:10.1016/S0021-9290(99)00201-8 . |
39 | BORGHI A, WOOD N B, MOHIADDIN R H, et al. 3D geometric reconstruction of thoracic aortic aneurysms[J]. Biomed Eng Online,2006,5:59. doi:10.1186/1475-925x-5-59 . |
40 | KATO Y, MATSUMOTO T, KUMAGAI K, et al. Development of a method to construct three-dimensional finite element models of thoracic aortic aneurysms from MRI images[C]//Proceedings International Workshop on Medical Imaging and Augmented Reality. Hong Kong: IEEE,2002:131-136. doi:10.1109/MIAR.2001.930275 . |
41 | 来志超,孙晓宁,古丽丹娜·沙艳,等. 胸腹主动脉瘤的手术方式与外科治疗选择[J].中国血管外科杂志(电子版),2018,10(4):233-236. doi:10.3969/j.issn.1674-7429.2018.04.002 . |
LAI Z C, SUN X N, GULIDANNA S Y, et al. Options of surgical methods for thoracoabdominal aortic aneurysm[J]. Zhongguo Xueguan Waike Zazhi (Dianzi Ban),2018,10(4):233-236. | |
42 | GASSER T C, AUER M, LABRUTO F, et al. Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations[J]. Eur J Vasc Endovascular Surg,2010,40(2):176-185. doi:10.1016/j.ejvs.2010.04.003 . |
43 | TIERNEY Á P, CALLANAN A, MCGLOUG HLIN T M. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk[J]. J Endovasc Ther,2012,19(1):100-114. doi:10.1583/11-3456.1 . |
44 | GHAVAMIAN A, MOUSAVI S J, AVRIL S. Computational study of growth and remodeling in ascending thoracic aortic aneurysms considering variations of smooth muscle cell basal tone[J]. Front Bioeng Biotechnol,2020,8:587376. doi:10.3389/fbioe.2020.587376 . |
45 | YAMAURA A, NAKAMURA T, MAKINO H, et al. Cerebral complication of antifibrinolytic therapy in the treatment of ruptured intracranial aneurysm. Animal experiment and a review of literature[J]. Eur Neurol,1980,19(2):77-84. doi:10.1159/000115131 . |
46 | ALTUN G, CAKIROGLU Y, PULATHAN Z, et al. Renoprotective potential of exogen erythropoietin on experimental ruptured abdominal aortic aneurysm model: An animal study[J]. Iran J Basic Med Sci,2020,23(2):271-276. doi:10.22038/ijbms.2019.362 15.8626 . |
47 | 孙立忠,刘宁宁,常谦,等. 主动脉夹层的细化分型及其应用[J].中华外科杂志,2005,43(18):1171-1176. doi:10.3760/j:issn:0529-5815.2005.18.002 . |
SUN L Z, LIU N N, CHANG Q, et al. The application of modified classification of the aortic dissection[J]. Zhonghua Waike Zazhi,2005,43(18):1171-1176. | |
48 | 杨晓冬. 主动脉夹层的血流动力学初步研究[D].北京:中国人民解放军军医进修学院,2010. |
YANG X D. The primary research of hemodynamics of the aortic dissection[D]. Beijing: Chinese People’s Liberation Army Postgraduate Medical School,2010. | |
49 | THUBRIKAR P A. Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissections[J]. J Med Eng Technol,1999,23(4):127-134. doi:10.1080/030919099 294177 . |
50 | PLONEK T, ZAK M, RYLSKI B, et al. Wall stress correlates with intimal entry tear localization in Type A aortic dissection[J]. Interact CardioVasc Thorac Surg,2018,27(6):797-801. doi:10.1093/icvts/ivy158 . |
51 | ZHANG Y, LU Q, FENG J, et al. A pilot study exploring the mechanisms involved in the longitudinal propagation of acute aortic dissection through computational fluid dynamic analysis[J]. Cardiology,2014,128(2):220-225. doi:10.1159/000358041 . |
52 | SHI Y, ZHU M, CHANG Y, et al. The risk of stanford type-A aortic dissection with different tear size and location: A numerical study[J]. Biomed Eng Online,2016,15(S2):128. doi:10.1186/s12938-016-0258-y . |
53 | 王祥,金正烽. 我国道路交通事故发展趋势研究[J].交通科技与经济,2019,21(3):29-32,37. doi:10.19348/j.cnki.issn1008-5696.2019.03.007 . |
WANG X, JIN Z F. Research on the tendency of road traffic accidents in China[J]. Jiaotong Keji Yu Jingji,2019,21(3):29-32,37. | |
54 | 李明,黄伟,曹峻华,等. 道路交通事故法医检验技术的研究进展[J].中国法医学杂志,2013,28(3):224-225,229. doi:10.13618/j.issn.1001-5728.2013.03.014 . |
LI M, HUANG W, CAO J H, et al. The progress of forensic examination technology in traffic accidents[J]. Zhongguo Fayixue Zazhi,2013,28(3):224-225,229. | |
55 | SHAH C S, MADDALI M, MUNGIKAR S A, et al. Analysis of a real-world crash using finite element modeling to examine traumatic rupture of the aorta[C]. Warrendale:SAE 2005 World Congress & Exhibition,2005. doi:10.4271/2005-01-1293 . |
56 | SIEGEL J H, YANG K H, SMITH J A, et al. Computer simulation and validation of the Archimedes Lever hypothesis as a mechanism for aortic isthmus disruption in a case of lateral impact motor vehicle crash: A Crash Injury Research Engineering Network (CIREN) study[J]. J Trauma,2006,60(5):1072-1082. doi:10.1097/01.ta.000020 3542.38532.02 . |
57 | NIKOLIC S, ATANASIJEVIC T, MIHAILOVIC Z, et al. Mechanisms of aortic blunt rupture in fatally injured front-seat passengers in frontal car collisions: An autopsy study[J]. Am J Forensic Med Pathol,2006,27(4):292-295. doi:10.1097/01.paf.0000248756.73053.82 . |
58 | BELWADI A, SIEGEL J H, SINGH A, et al. Finite element aortic injury reconstruction of near side lateral impacts using real world crash data[J]. J Biomech Eng,2012,134(1):011006. doi:10.1115/1.4005684 . |
59 | BELWADI A, YANG K H. Mechanism of aortic injury in nearside left lateral automotive crashes: A finite element accident injury reconstruction approach[C/OL]. Krakow:2011 International Research Council on Biomechanics of Injury Conference. (2011-09-16)[2021-10-25]. . |
[1] | 李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500. |
[2] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[3] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[4] | 陈建波, 郭影, 陈再勇, 鲍人辉, 孔繁荣. 钩吻中毒死亡法医学鉴定1例[J]. 法医学杂志, 2023, 39(5): 509-511. |
[5] | 马钳钳, 张云, 秦丽娜. 播散型毛霉病致死1例[J]. 法医学杂志, 2023, 39(5): 507-509. |
[6] | 孙语新, 龚晓娟, 郝秀丽, 田雨馨, 陈艺铭, 张宝, 阎春霞. 婴儿猝死综合征与婴儿感染性猝死共同相关基因的筛选及其调控网络的生物信息学分析[J]. 法医学杂志, 2023, 39(5): 433-440. |
[7] | 高日红, 王新宙, 王冰, 郑立新. 大剂量盐酸地芬尼多与乙醇、氯化钾联合中毒死亡1例[J]. 法医学杂志, 2023, 39(5): 512-515. |
[8] | 杨宇, 雷梵章, 董玉友, 马剑龙, 石启强, 叶雪松. 口服盐酸地芬尼多中毒死亡案例的回顾性分析[J]. 法医学杂志, 2023, 39(4): 393-398. |
[9] | 范飞, 武娟, 邓振华. 听力学客观检测技术在法医临床学中的应用进展[J]. 法医学杂志, 2023, 39(4): 360-366. |
[10] | 向青青, 陈立方, 苏秦, 杜宇坤, 梁沛妍, 康晓东, 石河, 徐曲毅, 赵建, 刘超, 陈晓晖. 微生物群落演替在死亡时间推断中的研究进展[J]. 法医学杂志, 2023, 39(4): 399-405. |
[11] | 苏秦, 陈倩玲, 吴伟斌, 向青青, 杨成梁, 乔东访, 李志刚. 原发性脑干损伤致死大鼠的脑干组织代谢组学分析[J]. 法医学杂志, 2023, 39(4): 373-381. |
[12] | 盛利, 宋国铭. “钢珠”气枪射击致颅脑损伤死亡1例[J]. 法医学杂志, 2023, 39(4): 417-418. |
[13] | 曹宇奇, 施妍, 向平, 郭寅龙. 机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进展[J]. 法医学杂志, 2023, 39(4): 406-416. |
[14] | 姚泽伟, 贾自发, 韦铭菲, 史俊展, 李凡. 肝豆状核变性者外伤后脑干出血死亡1例[J]. 法医学杂志, 2023, 39(4): 419-421. |
[15] | 李燃, 孙宏钰. 法医学亲缘关系鉴定方法和研究热点[J]. 法医学杂志, 2023, 39(3): 231-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||