Journal of Forensic Medicine ›› 2025, Vol. 41 ›› Issue (4): 340-347.DOI: 10.12116/j.issn.1004-5619.2025.350403
Special Issue: 快检技术赋能法医毒物学多场景应用专题
Previous Articles Next Articles
Tai-shen HE(
), Zhong-jiang LÜ, Yi-ming SUN, Yu-yang LI, Yi YE, Yao LIN(
), Lin-chuan LIAO(
)
Received:2025-04-15
Online:2025-11-25
Published:2025-08-25
Contact:
Yao LIN, Lin-chuan LIAO
CLC Number:
Tai-shen HE, Zhong-jiang LÜ, Yi-ming SUN, Yu-yang LI, Yi YE, Yao LIN, Lin-chuan LIAO. Rapid Analysis of Cyanide Based on a Ratiometric Fluorescent Probe Using Gold Nanoclusters-Fluorescein[J]. Journal of Forensic Medicine, 2025, 41(4): 340-347.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2025.350403
| 氰化物荧光分析方法 | 检出限 | 反应时间 | 便携式检测装置 | 数据来源 |
|---|---|---|---|---|
| 碳点-AuNCs法 | 0.15 μmol/L | - | 无 | [ |
| 香豆素探针法 | 0.22 μmol/L | - | 无 | [ |
| 氰乙烯基探针法 | 12.4 nmol/L | 30 s | 无 | [ |
| 三重荧光探针法 | 45 nmol/L | >13 min | 无 | [ |
| Benzo-Hemicyanine法 | 0.43 μmol/L | - | 无 | [ |
| 罗丹明B衍生物法 | 0.33 μmol/L | 30 min | 无 | [ |
| Hg-石墨烯量子点法 | 3.1 μmol/L | 5 min | 无 | [ |
| Calixarene法 | 0.115 μmol/L | - | 无 | [ |
| HBT-Br-thiazolium法 | 1.79 μmol/L | 2 min | 试纸 | [ |
| 三苯胺有机探针法 | 36 nmol/L | 4 min | 试纸 | [ |
| 聚集诱导发光活性分子法 | 6.17 nmol/L | - | 试纸 | [ |
| AuNCs-FL法 | 52.3 μmol/L | 2 min | 便携式装置(可读数) | 本研究 |
Tab. 1 Performance comparison between this method and other fluorescent analysis methods for cyanide
| 氰化物荧光分析方法 | 检出限 | 反应时间 | 便携式检测装置 | 数据来源 |
|---|---|---|---|---|
| 碳点-AuNCs法 | 0.15 μmol/L | - | 无 | [ |
| 香豆素探针法 | 0.22 μmol/L | - | 无 | [ |
| 氰乙烯基探针法 | 12.4 nmol/L | 30 s | 无 | [ |
| 三重荧光探针法 | 45 nmol/L | >13 min | 无 | [ |
| Benzo-Hemicyanine法 | 0.43 μmol/L | - | 无 | [ |
| 罗丹明B衍生物法 | 0.33 μmol/L | 30 min | 无 | [ |
| Hg-石墨烯量子点法 | 3.1 μmol/L | 5 min | 无 | [ |
| Calixarene法 | 0.115 μmol/L | - | 无 | [ |
| HBT-Br-thiazolium法 | 1.79 μmol/L | 2 min | 试纸 | [ |
| 三苯胺有机探针法 | 36 nmol/L | 4 min | 试纸 | [ |
| 聚集诱导发光活性分子法 | 6.17 nmol/L | - | 试纸 | [ |
| AuNCs-FL法 | 52.3 μmol/L | 2 min | 便携式装置(可读数) | 本研究 |
| 样品 | 氰化物加标质量浓度/(mg·L-1) | 检测值/( | 回收率/% | RSD/% |
|---|---|---|---|---|
| 白糖 | 30 | 30.7±0.6 | 102.3 | 1.2 |
| 淀粉 | 30 | 26.0±1.8 | 86.7 | 4.5 |
| 泥土 | 30 | 29.9±2.2 | 99.7 | 4.4 |
Tab. 2 Detection values and recovery rates of three types of samples spiked with cyanide
| 样品 | 氰化物加标质量浓度/(mg·L-1) | 检测值/( | 回收率/% | RSD/% |
|---|---|---|---|---|
| 白糖 | 30 | 30.7±0.6 | 102.3 | 1.2 |
| 淀粉 | 30 | 26.0±1.8 | 86.7 | 4.5 |
| 泥土 | 30 | 29.9±2.2 | 99.7 | 4.4 |
| [1] | 廖林川. 法医毒物分析[M].5版.北京:人民卫生出版社,2016:119-121. |
| LIAO L C. Forensic toxicological analysis[M]. 5th ed. Beijing: People’s Medical Publishing House,2016:119-121. | |
| [2] | 陈东. 医源性氰化物积蓄中毒案例鉴定探讨[J].中国法医学杂志,2024,39(S1):75-76. doi:10.13618/j.issn.1001-5728.2024.S.039 . |
| CHEN D. Discussion on identification cases of iatrogenic cyanide accumulation and poisoning[J]. Zhongguo Fayixue Zazhi,2024,39(S1):75-76. | |
| [3] | HENDRY-HOFER T B, NG P C, WITEOF A E, et al. A review on ingested cyanide: Risks, clinical presentation, diagnostics, and treatment challenges[J]. J Med Toxicol,2019,15(2):128-133. doi:10.1007/s13181-018-0688-y . |
| [4] | OSAK M, BUSZEWICZ G, BAJ J, et al. Determination of cyanide in blood for forensic toxicology purposes — A novel NCI GC-MS/MS technique[J]. Molecules,2021,26(18):5638. doi:10.3390/molecules26185638 . |
| [5] | AKHGARI M, BAGHDADI F, KADKHODAEI A. Cyanide poisoning related deaths, a four-year experience and review of the literature[J]. Aust J Forensic Sci,2016,48(2):186-194. doi:10.1080/00450618.2015.1045552 . |
| [6] | 魏鑫,王遥雪,凌约涛,等. 顶空气相色谱法测定固体废物中氰化物[J].化学分析计量,2020,29(6):15-18. doi:10.3969/j.issn.1008-6145.2020.06.004 . |
| WEI X, WANG Y X, LING Y T, et al. Determination of cyanide in solid wastes by headspace gas chromatography[J]. Huaxue Fenxi Jiliang,2020,29(6):15-18. | |
| [7] | 左家信,范翔,李欣,等. 顶空-气相色谱法测定饮用水中的氰化物和氯化氰[J].分析仪器,2023(5):36-40. doi:10.3969/j.issn.1001-232x.2023.05.008 . |
| ZUO J X, FAN X, LI X, et al. Determination of cyanide and cyanogen chloride in drinking water by headspace-gas chromatography[J]. Fenxi Yiqi,2023(5):36-40. | |
| [8] | 温尚龙,陈欣义,庞兆东,等. 一种快速定性测试废水处理中氰化物含量的检测方法:CN112798577A[P].2021-05-14. |
| WEN S L, CHEN X Y, PANG Z D, et al. A rapid qualitative detection method for cyanide content in wastewater treatment: CN112798577A[P]. 2021-05-14. | |
| [9] | 王晓芳,陈美,杨春亮,等. 木薯中氰化物含量的异烟酸-吡唑林酮分光光度法测定[J].分析仪器,2009(1):32-34. |
| doi:10.3969/j.issn.1001-232X.2009.01.010.WANG X F, CHEN M, YANG C L, et al. Determination of cyanide in cassava by isonicotinic acid-pyrazolone spectrophotometry[J]. Fenxi Yiqi,2009(1):32-34. | |
| [10] | WEI Y, TANG J, ZHANG J, et al. A label-free fluorescent-hydrogel sensor for heparin detection in diluted whole blood[J]. Chem Commun (Camb),2025,61(6):1215-1218. doi:10.1039/d4cc03780d . |
| [11] | YANG W, YE L, WU Y, et al. Arsenic field test kits based on solid-phase fluorescence filter effect induced by silver nanoparticle formation[J]. J Hazard Mater,2024,470:134038. doi:10.1016/j.jhazmat.2024.134038 . |
| [12] | JACKSON R, ODA R P, BHANDARI R K, et al. Development of a fluorescence-based sensor for rapid diagnosis of cyanide exposure[J]. Anal Chem,2014,86(3):1845-1852. doi:10.1021/ac403846s . |
| [13] | LIN Y, YE S, TIAN J, et al. Paper-assisted ratiometric fluorescent sensors for on-site sensing of sulfide based on the target-induced inner filter effect[J]. J Hazard Mater,2023,459:132201. doi:10.1016/j.jhazmat.2023.132201 . |
| [14] | LIN Y, LI Y, CHANG H, et al. Rapid testing of Δ9-tetrahydrocannabinol and its metabolite on-site using a label-free ratiometric fluorescence assay on a smartphone[J]. Anal Chem,2023,95(18): 7363-7371. doi:10.1021/acs.analchem.3c00666 . |
| [15] | ZHOU J, CHEN X, WEI Y, et al. Portable and rapid fluorescence turn-on detection of total pepsin in saliva based on strong electrostatic interactions[J]. Anal Chem,2023,95(49):18303-18308. doi:10. 1021/acs.analchem.3c04723 . |
| [16] | LONG L, YUAN X, CAO S, et al. Determination of cyanide in water and food samples using an efficient naphthalene-based ratiometric fluorescent probe[J]. ACS Omega,2019,4(6):10784-10790. doi:10.1021/acsomega.9b01308 . |
| [17] | HU Y, LU X, JIANG X, et al. Carbon dots and AuNCs co-doped electrospun membranes for ratiometric fluorescent determination of cyanide[J]. J Hazard Mater,2020,384:121368. doi:10.1016/j.jhaz mat.2019.121368 . |
| [18] | LIU Y, AI K, CHENG X, et al. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water[J]. Adv Funct Mater,2010,20(6):951-956. doi:10.1002/adfm.200902062 . |
| [19] | SUN Z, WU Z, ZONG Y, et al. Construction of metal-organic framework as a novel platform for ratiometric determination of cyanide[J]. Biosensors (Basel),2024,14(6):276. doi:10.3390/bios14060276 . |
| [20] | YANG H, YANG Y, LIU S, et al. Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters[J]. Anal Bioanal Chem,2020,412(23):5819-5826. doi:10.1007/s00216-020-02806-2 . |
| [21] | WEI Y, YANG L, YE Y, et al. A simple aptamer-dye fluorescence sensor for detecting Δ9-tetrahydrocannabinol and its metabolite in urban sewage[J]. Chem Commun (Camb),2024,60(39):5205-5208. doi:10.1039/d4cc00824c . |
| [22] | YE S, YU B, REN T, et al. Point-of-care platform based on solid-phase fluorescence filter effect for urinary iodine testing in children and pregnant women[J]. Anal Chem,2023,95(37):13949-13956. doi:10.1021/acs.analchem.3c02531 . |
| [23] | PAN W, HAN L, CAO X, et al. Dual-response near-infrared fluorescent probe for detecting cyanide and mitochondrial viscosity and its application in bioimaging[J]. Food Chem,2023,407:135163. doi:10.1016/j.foodchem.2022.135163 . |
| [24] | PENG T, LI S, ZHOU Y, et al. Two cyanoethylene-based fluorescence probes for highly efficient cyanide detection and practical applications in drinking water and living cells[J]. Talanta,2021,234:122615. doi:10.1016/j.talanta.2021.122615 . |
| [25] | LI Q, NIE J, SHAN Y, et al. Water-soluble fluorescent probe for simultaneous detection of cyanide, hypochlorite and bisulfite at different emission wavelengths[J]. Anal Biochem,2020,591:113539. doi:10. 1016/j.ab.2019.113539 . |
| [26] | MAGESH K, VIJAY N, WU S P, et al. Dual-responsive benzo-hemicyanine-based fluorescent probe for detection of cyanide and hydrogen sulfide: Real-time application in identification of food spoilage[J]. J Agric Food Chem,2023,71(2):1190-1200. doi:10.1021/acs.jafc.2c05567 . |
| [27] | MU S, GAO H, LI C, et al. A dual-response fluorescent probe for detection and bioimaging of hydrazine and cyanide with different fluorescence signals[J]. Talanta,2021,221:121606. doi:10.1016/j.talanta.2020.121606 . |
| [28] | KONGSANAN N, PIMSIN N, KEAWPROM C, et al. A fluorescence switching sensor for sensitive and selective detections of cyanide and ferricyanide using mercuric cation-graphene quantum dots[J]. ACS Omega,2021,6(22):14379-14393. doi:10.1021/acso mega.1c01242 . |
| [29] | OGUZ A, OGUZ M, KURSUNLU A N, et al. A fully water-soluble Calix[4]arene probe for fluorometric and colorimetric detection of toxic hydrosulfide and cyanide ions: Practicability in living cells and food samples[J]. Food Chem,2023,401:134132. doi:10.1016/j.foodchem.2022.134132 . |
| [30] | ERDEMIR S, MALKONDU S. Visual and quantitative detection of CN- ion in aqueous media by an HBT-Br and thiazolium conjugated fluorometric and colorimetric probe: Real samples and useful applications[J]. Talanta,2021,221:121639. doi:10. 1016/j.talanta.2020.121639 . |
| [31] | SERT A, ERDEMIR S, MALKONDU S. Ratiometric detection and monitoring of cyanide in biological, environmental and food samples by a novel triphenylamine-xhantane based fluorescent probe[J]. Anal Chim Acta,2024,1320:343000. doi:10.1016/j.aca.2024.343000 . |
| [32] | MAJEED S, WASEEM M T, KHAN G S, et al. Development of AIEE active fluorescent and colorimetric probe for the solid, solution, and vapor phase detection of cyanide: Smartphone and food applications[J]. Analyst,2022,147(17):3885-3893. doi:10.1039/d2an00937d . |
| [33] | NG B, QUINETE N, GARDINALI P R. Assessing accuracy, precision and selectivity using quality controls for non-targeted analysis[J]. Sci Total Environ,2020,713:136568. doi:10.1016/j.scitotenv.2020. 136568 . |
| [1] | Yan GAO, Fang CHEN, Wen-tao XIA, Xiao-ping YANG, Ze-yu WANG, Ze-ren YANG, Xia LIU, Yan-liang SHENG. Research Progress of Chirp ABR and Its Application in Forensic Auditory Identification [J]. Journal of Forensic Medicine, 2025, 41(4): 387-393. |
| [2] | Wen-yan LI, Jin-feng ZHAO, Wei-chen LIU, Shi-jing LÜ, Jia-xin ZHANG, Xu-dong ZHANG, Zhi-wen WEI, Ke-ming YUN, Chao ZHANG. Toxicokinetics of Chlorfenapyr and Its Metabolites in Rats [J]. Journal of Forensic Medicine, 2025, 41(4): 380-387. |
| [3] | Min SHEN. Practice and Reflection on Forensic Toxicology from the Perspective of Evidence Reliability [J]. Journal of Forensic Medicine, 2025, 41(4): 297-306. |
| [4] | Li-xia WEI, Bo LIU, Xiao-yuan YANG, Xi ZHANG, Yi-feng LAN, Chao ZHANG, Juan JIA, Dan ZHANG, Zhi-wen WEI, Ke-ming YUN, Zhe CHEN. Detection of Ketamine and Norketamine Using an Aptamer-Functionalized Graphene Oxide Fluorescent Sensor [J]. Journal of Forensic Medicine, 2025, 41(4): 326-339. |
| [5] | Jia-hao LI, Jiang LING, Zi-hao CAI, Zi-yuan ZHENG, Yan-jun DING. Fluorescent Probe Development for Rapid Detection of Tiletamine Based on Copper Nanozyme and Molecular Imprinting Technology [J]. Journal of Forensic Medicine, 2025, 41(4): 355-363. |
| [6] | Zi-wen GUO, Tian-yu QIU, Yue CAO. Rapid Identification of Etomidate and Its Structural Analogues Based on Surface-Enhanced Raman Spectroscopy and Machine Learning [J]. Journal of Forensic Medicine, 2025, 41(4): 364-370. |
| [7] | Meng-yao TANG, Bo-yu HUANG, Cui-mei LIU, Xue-yan LIU, Wei JIA, Zhen-dong HUA. Rapid Screening of Etomidate and Its Analogues Using a Portable Mass Spectrometer [J]. Journal of Forensic Medicine, 2025, 41(4): 348-354. |
| [8] | Jing-chun BAO, Jing-jing ZHAO, Jiao-yong LI, Jing-hua MENG, Xiao-long WANG, Xiao-ni ZHAN, Jun YAO, Xu WU. Construction of a Competency Evaluation Model for Forensic Practitioners [J]. Journal of Forensic Medicine, 2025, 41(4): 371-379. |
| [9] | Yi-ming TIAN, Yi-bo YAN, Di WEN, Yan SHI. Research Progress on the Application of Novel Functional Materials for Rapid Detection of New Psychoactive Substances [J]. Journal of Forensic Medicine, 2025, 41(4): 314-325. |
| [10] | Qi LIAO, Yong-hong LIU, Ying JIAO, Xiao-ying YANG, Yi-hua YANG, Cui-mei LIU, Rui-xia GAO. Development of Benchtop Low‑Field Nuclear Magnetic Resonance Technology and Its Application in Drug Control Field [J]. Journal of Forensic Medicine, 2025, 41(3): 267-276. |
| [11] | Zhuo LI, Yi-ru ZENG, Zhi-long SHU, Xue-hong SUN, Kui ZHANG. Research Status of Caenorhabditis elegans Model in Toxicology and Its Applications in Forensic Science [J]. Journal of Forensic Medicine, 2025, 41(2): 136-143. |
| [12] | Cheng-tao LI, Bin CONG. Thoughts on the Development of Forensic Medicine Discipline Standing at a New Historical Starting Point [J]. Journal of Forensic Medicine, 2025, 41(1): 9-14. |
| [13] | Hong-yu SUN, Hu ZHAO. Seventy Years of Passing on the Torch, Striving Forward in the New Era — Thoughts on the Construction of Forensic Medicine at Sun Yat-sen University [J]. Journal of Forensic Medicine, 2025, 41(1): 20-24. |
| [14] | Shu-jin LI, Chun-ling MA, Bin CONG. Uphold Fundamental Principles and Break New Ground and Work Persistently to Build a First-Class Forensic Medicine Discipline [J]. Journal of Forensic Medicine, 2025, 41(1): 5-8. |
| [15] | Guang CHEN, Rong-shuai WANG, Li SU, Yue ZHANG, Xue-xia LIU, Shi-yong FANG, Zhan-zhan LIU, Ya-jun XU, Xiang XU. Thoughts and Practices on the Development of Forensic Medicine Discipline in the Perspective of Building a Regional High-Level Medical University [J]. Journal of Forensic Medicine, 2025, 41(1): 35-39. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||