法医学杂志 ›› 2022, Vol. 38 ›› Issue (3): 400-407.DOI: 10.12116/j.issn.1004-5619.2019.391203
收稿日期:
2019-12-13
发布日期:
2022-06-25
出版日期:
2022-06-28
通讯作者:
严慧
作者简介:
严慧,女,副研究员,主要从事法医毒物学研究;E-mail:yanh@ssfjd.cn基金资助:
Xiu-ying YAN1,2(), Ping XIANG1, Zhi-guo YU2, Hui YAN1(
)
Received:
2019-12-13
Online:
2022-06-25
Published:
2022-06-28
Contact:
Hui YAN
摘要:
代谢组学是继基因组学和蛋白质组学之后新近发展起来的一门学科,是系统生物学的重要组成部分,通过高通量、高灵敏度的仪器对限定条件下的特定生物样品中所有代谢组分进行定性定量分析,并结合多元统计对数据分析处理,获得机体生理、病理或毒理变化的信息。近年来,由于滥用物质的作用机制比较复杂,且新精神活性物质不断涌现,代谢组学在滥用物质中的研究越来越广泛。因此,本文对代谢组学在滥用物质毒性作用机制、成瘾机制及生物标志物的发现等方面的应用进行了综述。
中图分类号:
严秀莺, 向平, 于治国, 严慧. 代谢组学在滥用物质毒理学研究中的应用[J]. 法医学杂志, 2022, 38(3): 400-407.
Xiu-ying YAN, Ping XIANG, Zhi-guo YU, Hui YAN. Application of Metabonomics in Substance Abuse Toxicology Research[J]. Journal of Forensic Medicine, 2022, 38(3): 400-407.
1 | 沈敏,向平. 滥用物质分析与应用[M].北京:科学出版社,2016. |
SHEN M, XIANG P. Analysis and application of substance abuse[M]. Beijing: Science Press,2016. | |
2 | 徐多麒,王继芬,孟品佳. 新精神活性物质的特点及危害[C]//第五届全国“公共安全领域中的化学问题”暨第三届危险物质与安全应急技术研讨会.银川,2015. |
XU D Q, WANG J F, MENG P J. Characteristics and harm of new psychoactive substances[C]//The fifth national “chemical problems in the field of public safety” and the third symposium on hazardous substances and safety emergency technology. Yinchuan,2015. | |
3 | DREXLER D M, REILY M D, SHIPKOVA P A. Advances in mass spectrometry applied to pharmaceutical metabolomics[J]. Anal Bioanal Chem,2011,399(8):2645-2653. doi:10.1007/s00216-010-4370-8 . |
4 | KUMAR B S, LEE Y J, YI H J, et al. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach[J]. Anal Chimica Acta,2010,661(1):47-59. doi:10.1016/j.aca.2009.11.063 . |
5 | SUGIMOTO M, WONG D T, HIRAYAMA A, et al. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles[J]. Metabolomics,2010,6(1):78-95. doi:10.1007/s11306-009-0178-y . |
6 | SHIMA N, MIYAWAKI I, BANDO K, et al. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat[J]. Toxicology,2011,287(1/2/3):29-37. doi:10.1016/j.tox.2011.05.012 . |
7 | ZHENG T, LIU L, SHI J, et al. The metabolic impact of methamphetamine on the systemic metabolism of rats and potential markers of methamphetamine abuse[J]. Mol Biosyst,2014,10(7):1968-1977. doi:10.1039/c4mb00158c . |
8 | KADDURAH-DAOUK R, KRISTAL B S, WEIN-SHILBOUM R M. Metabolomics: A global biochemical approach to drug response and disease[J]. Annu Rev Pharmacol Toxicol,2008,48:653-683. doi:10.1146/annurev.pharmtox.48.113006.094715 . |
9 | UDDIN R K, SINGH S M. Metabolomics in Drug Response and Addiction[M]//JOHNSON B. Addiction medicine. New York: Sringer,2011:237-253. doi:10.1007/978-1-4419-0338-9_12 . |
10 | VOLKOW N D, KOOB G, BALER R. Biomarkers in substance use disorders[J]. ACS Chem Neurosci,2015,6(4):522-525. doi:10.1021/acschemneuro.5b00067 . |
11 | BLANCHOT J, RODIER M, LE BOUTEILLER A. Effect of El Niño Southern Oscillation events on the distribution and abundance of phytoplankton in the Western Pacific Tropical Ocean along 165°E[J]. J Plankton Res,1992,14(1):137-156. doi:10.1093/plankt/14.1.137 . |
12 | NESTLER E J. Is there a common molecular pathway for addiction? [J]. Nat Neurosci,2005,8(11):1445-1449. doi:10.1038/nn1578 . |
13 | OLDENDORF W H, HYMAN S, BRAUN L, et al. Blood-brain barrier: Penetration of morphine, codeine, heroin, and methadone after carotid injection[J]. Science,1972,178(4064):984-986. doi:10.1126/science.178.4064.984 . |
14 | LI R S, TAKEDA T, OHSHIMA T, et al. Metabolomic profiling of brain tissues of mice chronically exposed to heroin[J]. Drug Metab Pharmacokinet,2017,32(1):108-111. doi:10.1016/j.dmpk.2016.10.410 . |
15 | LI L, LI J Y, CAO H J, et al. Determination of metabolic phenotype and potential biomarkers in the liver of heroin addicted mice with hepatotoxicity[J]. Life Sci,2021,287:120103. doi:10.1016/j.lfs.2021. 120103 . |
16 | LI Y Y, GHANBARI R, PATHMASIRI W, et al. Untargeted metabolomics: Biochemical perturbations in golestan cohort study opium users inform intervention strategies[J]. Front Nutr,2020,7:584-585. doi:10.3389/fnut.2020.584585 . |
17 | JIANG S K, LIU G J, YUAN H Y, et al. Changes on proteomic and metabolomic profile in serum of mice induced by chronic exposure to tramadol[J]. Sci Rep,2021,11:1454. doi:10.1038/s41598-021-81109-7 . |
18 | XIA W, LIU G J, SHAO Z Y, et al. Toxicology of tramadol following chronic exposure based on metabolomics of the cerebrum in mice[J]. Sci Rep,2020,10:11130. doi:10.1038/s41598-020-67974-8 . |
19 | FLECKENSTEIN A E, METZGER R R, GIBB J W, et al. A rapid and reversible change in dopamine transporters induced by methamphetamine[J]. Eur J Pharmacol,1997,323(2/3): R9-R10. doi:10.1016/S0014-2999(97)00148-9 . |
20 | PIFL C, DROBNY H, REITHER H, et al. Mechanism of the dopamine-releasing actions of ampheta-mine and cocaine: Plasmalemmal dopamine transporter versus vesicular monoamine transporter[J]. Mol Pharmacol,1995,47(2):368-373. |
21 | COSTA T B B C, LACERDA A L T, MAS C D, et al. Insights into the effects of crack abuse on the human metabolome using a NMR approach[J]. J Proteome Res,2019,18(1):341-348. doi:10.1021/acs.jproteome.8b00646 . |
22 | 雷啟芬,朱丹. 代谢组学在药物滥用毒理学中的应用[J].航天医学与医学工程,2017,30(3):230-234. doi:10.16289/j.cnki.1002-0837.2017.03.014 . |
LEI Q F, ZHU D. Application of metabolomics on toxicology of drugs abuse[J]. Hangtian Yixue Yu Yixue Gongcheng,2017,30(3):230-234. | |
23 | SÁNCHEZ-LÓPEZ E, MARCOS A, AMBROSIO E, et al. Investigation on the combined effect of cocaine and ethanol administration through a liquid chromatography-mass spectrometry metabolomics approach[J]. J Pharm Biomed Anal,2017,140:313-321. doi:10.1016/j.jpba.2017.03.061 . |
24 | DARKE S, DARKE S, KAYE S, et al. Major physical and psychological harms of methamphetamine use[J]. Drug Alcohol Rev,2008,27(3):253-262. doi:10.1080/09595230801923702 . |
25 | HOMER B D, SOLOMON T M, MOELLER R W, et al. Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and behavioral implications[J]. Psychol Bull,2008,134(2):301-310. doi:10.1037/0033-2909.134.2.301 . |
26 | MCCLAY J L, ADKINS D E, VUNCK S A, et al. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure[J]. Metabolomics,2013,9(2):392-402. doi:10.1007/s11306-012-0456-y . |
27 | ARAÚJO A M, BASTOS M L, FERNANDES E, et al. GC-MS metabolomics reveals disturbed metabolic pathways in primary mouse hepatocytes exposed to subtoxic levels of 3,4-methylenedioxymethamphetamine (MDMA)[J]. Arch Toxicol,2018,92(11):3307-3323. doi:10.1007/s00204-018-2314-9 . |
28 | BOXLER M I, STREUN G L, LIECHTI M E, et al. Human metabolome changes after a single dose of 3,4-methylenedioxymethamphetamine (MDMA) with special focus on steroid metabolism and inflammation processes[J]. J Proteome Res,2018,17(8):2900-2907. doi:10.1021/acs.jproteome.8b00438 . |
29 | NIELSEN K L, TELVING R, ANDREASEN M F, et al. A metabolomics study of retrospective forensic data from whole blood samples of humans exposed to 3,4-methylenedioxymethamphetamine: A new approach for identifying drug metabolites and changes in metabolism related to drug consumption[J]. J Proteome Res,2016,15(2):619-627. doi:10.1021/acs.jproteome.5b01023 . |
30 | CHEN F, YE Y, DAI X H, et al. Metabolic effects of repeated ketamine administration in the rat brain[J]. Biochem Biophys Res Commun,2020,522(3):592-598. doi:10.1016/j.bbrc.2019.11.140 . |
31 | WEN C, ZHANG M, ZHANG Y, et al. Brain metabolomics in rats after administration of ketamine[J]. Biomed Chromatogr,2016,30(1):81-84. doi:10.1002/bmc.3518 . |
32 | WU Z G, CHEN F, WU H, et al. Urinary metabonomics of rats with ketamine-induced cystitis using GC-MS spectroscopy[J]. Int J Clin Exp Pathol,2018,11(2):558-567. |
33 | ZHANG M L, WEN C C, ZHANG Y, et al. Serum metabolomics in rats models of ketamine abuse by gas chromatography-mass spectrometry[J]. J Chromatogr B,2015,1006:99-103. doi:10.1016/j.jchromb.2015.10.037 . |
34 | HAN X, SHAO W, LIU Z, et al. iTRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression[J]. Neuroscience,2015,298:220-292. doi:10.1016/j.neuroscience.2015.04.006 . |
35 | KITAMURA Y, DOI M, KUWATSUKA K, et al. Chronic treatment with imipramine and lithium increases cell proliferation in the hippocampus in adrenocorticotropic hormone-treated rats[J]. Biol Pharm Bull,2011,34(1):77-81. doi:10.1248/bpb.34.77 . |
36 | LIAN B, XIA J, YANG X, et al. Mechanisms of ketamine on mice hippocampi shown by gas chromatography-mass spectrometry-based metabolomic analysis[J]. Neuroreport,2018,29(9):704-711. doi:10.1097/wnr.0000000000001020 . |
37 | WECKMANN K, LABERMAIER C, ASARA J M, et al. Time-dependent metabolomic profiling of Ketamine drug action reveals hippocampal pathway alterations and biomarker candidates[J]. Transl Psychiatry,2014,4(11): e481. doi:10.1038/tp.2014.119 . |
38 | DHUMMAKUPT E S, RIZZO G M, FEASEL M, et al. Proteomic and metabolomic profiling identify plasma biomarkers for exposure to ultra-low levels of carfentanil[J]. Toxicol Sci,2019,167(2):524-535. doi:10.1093/toxsci/kfy259 . |
39 | AMANTE E, ALLADIO E, RIZZO R, et al. Untargeted metabolomics in forensic toxicology: A new approach for the detection of fentanyl intake in urine samples[J]. Molecules,2021,26(16):4990. doi:10.3390/molecules26164990 . |
40 | ZAITSU K, HAYASHI Y, SUZUKI K, et al. Metabolome disruption of the rat cerebrum induced by the acute toxic effects of the synthetic cannabinoid MAM-2201[J]. Life Sci,2015,137:49-55. doi:10.1016/j.lfs.2015.05.013 . |
41 | MARKIN P A, BRITO A, MOSKALEVA N E, et al. Short- and long-term exposures of the synthetic cannabinoid 5F-APINAC induce metabolomic alterations associated with neurotransmitter systems and embryoto-xicity confirmed by teratogenicity in zebrafish[J]. Comp Biochem Physiol C Toxicol Pharmacol,2021,243:109000. doi:10.1016/j.cbpc.2021.109000 . |
42 | OLESTI E, DE TOMA I, RAMAEKERS J G, et al. Metabolomics predicts the pharmacological profile of new psychoactive substances[J]. J Psychopharmacol,2019,33(3):347-354. doi:10.1177/0269881118812103 . |
43 | 刘闯. 条件性位置偏爱试验[J].中国药物滥用防治杂志,1996,2(4):37-39. |
LIU C. Conditional place preference test[J]. Zhongguo Yaowu Lanyong Fangzhi Zazhi,1996,2(4):37-39. | |
44 | MENG J R, ZHANG X D, WU H, et al. Morphine-induced conditioned place preference in mice: Metabolomic profiling of brain tissue to find “molecular switch” of drug abuse by gas chromatography/mass spectrometry[J]. Anal Chimica Acta,2012,710:125-130. doi:10.1016/j.aca.2011.09.033 . |
45 | LI H, BU Q, CHEN B, et al. Mechanisms of metabonomic for a gateway drug: Nicotine priming enhances behavioral response to cocaine with modification in energy metabolism and neurotransmitter level[J]. PLoS One,2014,9(1): e87040. doi:10.1371/journal.pone.0087040 . |
46 | GUO R, TANG Q X, YE Y, et al. Effects of gender on ketamine-induced conditioned placed preference and urine metabonomics[J]. Regul Toxicol Pharmacol,2016,77:263-274. doi:10.1016/j.yrtph.2016.03.007 . |
47 | ZAITSU K, HAYASHI Y, KUSANO M, et al. Application of metabolomics to toxicology of drugs of abuse: A mini review of metabolomics approach to acute and chronic toxicity studies[J]. Drug Metab Pharmacokinet,2016,31(1):21-26. doi:10.1016/j.dmpk.2015.10.002 . |
48 | LI Y, YAN G Y, ZHOU J Q, et al. 1H NMR-based metabonomics in brain nucleus accumbens and striatum following repeated cocaine treatment in rats[J]. Neuroscience,2012,218:196-205. doi:10.1016/j.neuroscience.2012.05.019 . |
49 | BU Q, LV L, YAN G Y, et al. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats[J]. Neuro Toxicology,2013,36:17-23. doi:10.1016/j.neuro.2013.02.007 . |
50 | LIN M, XU J M, LIU X, et al. Metabolomics profiling of methamphetamine addicted human serum and three rat brain areas[J]. RSC Adv,2019,9(70):41107-41119. doi:10.1039/c9ra08096a . |
51 | KIM S, JANG W J, YU H, et al. Revealing metabolic perturbation following heavy methamphetamine abuse by human hair metabolomics and network analysis[J]. Int J Mol Sci,2020,21(17): E6041. doi:10.3390/ijms21176041 . |
52 | ZHOU J, LI Y, YAN G, et al. Protective role of taurine against morphine-induced neurotoxicity in C6 cells via inhibition of oxidative stress[J]. Neurotox Res,2011,20(4):334-342. doi:10.1007/s12640-011-9247-x . |
53 | OJA S S, SARANSAARI P. Pharmacology of taurine[J]. Proc West Pharmacol Soc,2007,50:8-15. |
54 | MANJI H K, MOORE G J, RAJKOWSKA G, et al. Neuroplasticity and cellular resilience in mood disorders[J]. Mol Psychiatry,2000,5(6):578-593. doi:10.1038/sj.mp.4000811 . |
55 | DOLE V P, NYSWANDER M E. Heroin addiction --A metabolic disease[J]. Arch Intern Med,1967,120(1):19-24. doi:10.1001/archinte.1967.00300010021004 . |
56 | ZHENG T, LIU L S, AA J Y, et al. Metabolic phenotype of rats exposed to heroin and potential markers of heroin abuse[J]. Drug Alcohol Dependence,2013,127(1/2/3):177-186. doi:10.1016/j.drugalcdep.2012.06.031 . |
57 | NING T, LENG C, CHEN L, et al. Metabolomics analysis of serum in a rat heroin self-administration model undergoing reinforcement based on 1H-nuclear magnetic resonance spectra[J]. BMC Neurosci,2018,19(1):4. doi:10.1186/s12868-018-0404-5 . |
58 | 闫娟,李林熹,张波. 代谢组学在常见毒品滥用中的研究进展[J].川北医学院学报,2017,32(2):306-309,314. doi:10.3969/j.issn.1005-3697.2017.02.043 . |
YAN J, LI L X, ZHANG B. Research progress of metabonomics in common drug abuse[J]. Chuanbei Yixueyuan Xuebao,2017,32(2):306-309,314. | |
59 | 吴明健,王玫,杨瑞琴,等. 基于液相色谱联合离子阱-飞行时间质谱技术的海洛因滥用成瘾大鼠血清代谢组学研究[J].分析试验室,2014,33(2):183-186. doi:10.13595/j.cnki.issn1000-0720.2014.0041 . |
WU M J, WANG M, YANG R Q, et al. Metabonomics study of serum in heroin abused rats by liquid chromatography coupled with ion trap-time of flight mass spectrometry[J]. Fenxi Shiyanshi,2014,33(2):183-186. | |
60 | 吴明健,王玫,彭明丽,等. 运用液相色谱联合离子阱-飞行时间质谱法进行海洛因成瘾人员代谢组学研究[J].分析化学,2014,42(4):602-606. doi:10.3724/SP.J.1096.2014.30953 . |
WU M J, WANG M, PENG M L, et al. A metabonomics study on heroin addicts using liquid chromatography coupled with ion trap-time of flight mass spectrometry[J]. Fenxi Huaxue,2014,42(4):602-606. | |
61 | DINIS-OLIVEIRA R J. Metabolism and metabolomics of opiates: A long way of forensic implications to unravel[J]. J Forensic Leg Med,2019,61:128-140. doi:10.1016/j.jflm.2018.12.005 . |
62 | GHANBARI R, LI Y Y, PATHMASIRI W, et al. Metabolomics reveals biomarkers of opioid use disorder[J]. Transl Psychiatry,2021,11:103. doi:10.1038/s41398-021-01228-7 . |
[1] | 李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500. |
[2] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[3] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[4] | 曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477. |
[5] | 陈建波, 郭影, 陈再勇, 鲍人辉, 孔繁荣. 钩吻中毒死亡法医学鉴定1例[J]. 法医学杂志, 2023, 39(5): 509-511. |
[6] | 范飞, 武娟, 邓振华. 听力学客观检测技术在法医临床学中的应用进展[J]. 法医学杂志, 2023, 39(4): 360-366. |
[7] | 向青青, 陈立方, 苏秦, 杜宇坤, 梁沛妍, 康晓东, 石河, 徐曲毅, 赵建, 刘超, 陈晓晖. 微生物群落演替在死亡时间推断中的研究进展[J]. 法医学杂志, 2023, 39(4): 399-405. |
[8] | 苏秦, 陈倩玲, 吴伟斌, 向青青, 杨成梁, 乔东访, 李志刚. 原发性脑干损伤致死大鼠的脑干组织代谢组学分析[J]. 法医学杂志, 2023, 39(4): 373-381. |
[9] | 曹宇奇, 施妍, 向平, 郭寅龙. 机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进展[J]. 法医学杂志, 2023, 39(4): 406-416. |
[10] | 李燃, 孙宏钰. 法医学亲缘关系鉴定方法和研究热点[J]. 法医学杂志, 2023, 39(3): 231-239. |
[11] | 马晓燕, 孙宏钰, 黎青. 常染色体STR三等位基因型在法医DNA分析中的研究进展[J]. 法医学杂志, 2023, 39(3): 240-246. |
[12] | 陈航, 胡婧, 乔正, 邓虹霄, 吕敏, 刘伟. 法医毒物领域生物基质标准物质的研究进展[J]. 法医学杂志, 2023, 39(2): 176-185. |
[13] | 高红艳, 刘光甫, 吴建, 陈鹏宇. 动物DNA分型及其在法医学中的研究进展[J]. 法医学杂志, 2023, 39(2): 161-167. |
[14] | 龙武, 瞿鹏飞, 马琳, 王蕊, 习严梅, 李玉华, 聂胜洁, 段婷, 杜进良, 唐雪, 赵静峰, 雷普平, 王跃兵. 一起云南不明原因猝死案件中4种野生菌的细胞毒性[J]. 法医学杂志, 2023, 39(2): 121-128. |
[15] | 程忠平, 刘燕飞, 徐兴敏, 莫耀南. 磁性纳米颗粒在法医学痕量分析中的应用进展[J]. 法医学杂志, 2023, 39(2): 168-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||