• XXXX •
Dan-yang LI1,2,3(), Hui-ming ZHOU3,4, Lei WAN3, Tai-ang LIU5, Yuan-zhe LI5, Mao-wen WANG3, Ya-hui WANG3(
)
Received:
2024-12-25
Contact:
Ya-hui WANG
CLC Number:
Dan-yang LI, Hui-ming ZHOU, Lei WAN, Tai-ang LIU, Yuan-zhe LI, Mao-wen WANG, Ya-hui WANG. Bone Age Estimation of Chinese Han Adolescents and Children’s Elbow Joint X-rays Based on Multiple Deep Convolutional Neural Network Models[J]. Journal of Forensic Medicine, DOI: 10.12116/j.issn.1004-5619.2024.241202.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2024.241202
省市 | 男性 | 女性 | 合计 |
---|---|---|---|
合计 | 517 | 426 | 943 |
上海 | 34 | 21 | 55 |
浙江 | 157 | 120 | 277 |
广东 | 60 | 3 | 63 |
海南 | 43 | 40 | 83 |
河南 | 146 | 204 | 350 |
陕西 | 77 | 38 | 115 |
Tab. 1 Distribution of male and female samplesby region
省市 | 男性 | 女性 | 合计 |
---|---|---|---|
合计 | 517 | 426 | 943 |
上海 | 34 | 21 | 55 |
浙江 | 157 | 120 | 277 |
广东 | 60 | 3 | 63 |
海南 | 43 | 40 | 83 |
河南 | 146 | 204 | 350 |
陕西 | 77 | 38 | 115 |
真实年龄/岁 | 训练集和验证集 | 内部测试集 | 合计 |
---|---|---|---|
合计 | 754 | 189 | 943 |
6.00~<8.00 | 63 | 20 | 83 |
8.00~<10.00 | 84 | 17 | 101 |
10.00~<12.00 | 151 | 23 | 174 |
12.00~<14.00 | 313 | 77 | 390 |
14.00~<16.00 | 143 | 52 | 195 |
Tab. 2 Distribution of elbow X-ray image samplesfor adolescents and children
真实年龄/岁 | 训练集和验证集 | 内部测试集 | 合计 |
---|---|---|---|
合计 | 754 | 189 | 943 |
6.00~<8.00 | 63 | 20 | 83 |
8.00~<10.00 | 84 | 17 | 101 |
10.00~<12.00 | 151 | 23 | 174 |
12.00~<14.00 | 313 | 77 | 390 |
14.00~<16.00 | 143 | 52 | 195 |
模型 | 0.001 | 0.000 1 | 0.000 5 | 0.000 05 | ||||
---|---|---|---|---|---|---|---|---|
分割损失 | 准确率/% | 分割损失 | 准确率/% | 分割损失 | 准确率/% | 分割损失 | 准确率/% | |
U-Net | 0.124 0 | 67.0 | 0.013 0 | 72.0 | 0.084 9 | 78.0 | 0.596 1 | 73.0 |
UNet++ | 0.059 3 | 83.0 | 0.000 3 | 94.0 | 0.003 6 | 88.0 | 0.070 4 | 86.0 |
TransUNet | 0.049 1 | 82.0 | 0.059 5 | 83.0 | 0.305 1 | 75.0 | 0.097 1 | 92.0 |
Tab. 3 Model performance under different learning rates after segmentation using scheme 2
模型 | 0.001 | 0.000 1 | 0.000 5 | 0.000 05 | ||||
---|---|---|---|---|---|---|---|---|
分割损失 | 准确率/% | 分割损失 | 准确率/% | 分割损失 | 准确率/% | 分割损失 | 准确率/% | |
U-Net | 0.124 0 | 67.0 | 0.013 0 | 72.0 | 0.084 9 | 78.0 | 0.596 1 | 73.0 |
UNet++ | 0.059 3 | 83.0 | 0.000 3 | 94.0 | 0.003 6 | 88.0 | 0.070 4 | 86.0 |
TransUNet | 0.049 1 | 82.0 | 0.059 5 | 83.0 | 0.305 1 | 75.0 | 0.097 1 | 92.0 |
模型 | 0.001 | 0.000 1 | 0.000 5 | 0.000 05 | ||||
---|---|---|---|---|---|---|---|---|
分割损失 | 准确率/% | 分割损失 | 准确率/% | 分割损失 | 准确率/% | 分割损失 | 准确率/% | |
U-Net | 0.122 0 | 66.5 | 0.014 0 | 71.8 | 0.085 3 | 77.5 | 0.595 1 | 73.2 |
UNet++ | 0.058 5 | 83.2 | 0.000 4 | 93.8 | 0.003 7 | 87.9 | 0.071 0 | 85.8 |
TransUNet | 0.050 2 | 82.1 | 0.058 8 | 83.4 | 0.304 7 | 75.2 | 0.097 5 | 91.8 |
Tab. 4 Model performance under different learning rates after segmentation using scheme 3
模型 | 0.001 | 0.000 1 | 0.000 5 | 0.000 05 | ||||
---|---|---|---|---|---|---|---|---|
分割损失 | 准确率/% | 分割损失 | 准确率/% | 分割损失 | 准确率/% | 分割损失 | 准确率/% | |
U-Net | 0.122 0 | 66.5 | 0.014 0 | 71.8 | 0.085 3 | 77.5 | 0.595 1 | 73.2 |
UNet++ | 0.058 5 | 83.2 | 0.000 4 | 93.8 | 0.003 7 | 87.9 | 0.071 0 | 85.8 |
TransUNet | 0.050 2 | 82.1 | 0.058 8 | 83.4 | 0.304 7 | 75.2 | 0.097 5 | 91.8 |
模型 | 方案一 | 方案二 | 方案三 | ||||||
---|---|---|---|---|---|---|---|---|---|
MAE/岁 | P±0.7岁 | P±1.0岁 | MAE/岁 | P±0.7岁 | P±1.0岁 | MAE/岁 | P±0.7岁 | P±1.0岁 | |
VGG16 | 2.99 | 39.86 | 49.20 | 1.71 | 50.71 | 59.30 | 1.72 | 50.94 | 59.60 |
VGG19 | 2.97 | 34.41 | 39.10 | 1.57 | 60.95 | 77.90 | 1.56 | 60.86 | 77.60 |
InceptionV2 | 1.94 | 36.53 | 39.70 | 1.69 | 44.70 | 51.10 | 1.70 | 45.20 | 51.40 |
InceptionV3 | 1.33 | 39.43 | 41.60 | 1.20 | 51.32 | 60.80 | 1.19 | 50.95 | 60.50 |
ResNet34 | 2.38 | 34.41 | 38.80 | 1.02 | 68.67 | 79.60 | 0.84 | 67.30 | 79.20 |
ResNet50 | 2.23 | 39.72 | 45.90 | 1.49 | 53.83 | 63.30 | 0.86 | 57.84 | 66.30 |
ResNet101 | 1.23 | 48.62 | 54.30 | 1.32 | 46.90 | 52.30 | 0.89 | 64.60 | 77.10 |
DenseNet121 | 1.39 | 44.55 | 50.60 | 0.93 | 63.78 | 83.20 | 0.83 | 70.03 | 84.30 |
Tab. 5 Prediction performance of different prediction models on the internal test set using various schemes
模型 | 方案一 | 方案二 | 方案三 | ||||||
---|---|---|---|---|---|---|---|---|---|
MAE/岁 | P±0.7岁 | P±1.0岁 | MAE/岁 | P±0.7岁 | P±1.0岁 | MAE/岁 | P±0.7岁 | P±1.0岁 | |
VGG16 | 2.99 | 39.86 | 49.20 | 1.71 | 50.71 | 59.30 | 1.72 | 50.94 | 59.60 |
VGG19 | 2.97 | 34.41 | 39.10 | 1.57 | 60.95 | 77.90 | 1.56 | 60.86 | 77.60 |
InceptionV2 | 1.94 | 36.53 | 39.70 | 1.69 | 44.70 | 51.10 | 1.70 | 45.20 | 51.40 |
InceptionV3 | 1.33 | 39.43 | 41.60 | 1.20 | 51.32 | 60.80 | 1.19 | 50.95 | 60.50 |
ResNet34 | 2.38 | 34.41 | 38.80 | 1.02 | 68.67 | 79.60 | 0.84 | 67.30 | 79.20 |
ResNet50 | 2.23 | 39.72 | 45.90 | 1.49 | 53.83 | 63.30 | 0.86 | 57.84 | 66.30 |
ResNet101 | 1.23 | 48.62 | 54.30 | 1.32 | 46.90 | 52.30 | 0.89 | 64.60 | 77.10 |
DenseNet121 | 1.39 | 44.55 | 50.60 | 0.93 | 63.78 | 83.20 | 0.83 | 70.03 | 84.30 |
1 | 张帅,张俊华. 基于深度学习的儿童手骨X光图像骨龄评估方法[J].航天医学与医学工程,2021,34(3):252-259. doi:10.16289/j.cnki.1002-0837.2021.03.010 . |
ZHANG S, ZHANG J H. Bone age assessment method on X-ray images of pediatric hand bone based on deep learning[J]. Hangtian Yixue Yu Yixue Gongcheng,2021,34(3):252-259. | |
2 | 王亚辉,王子慎,魏华,等. 基于支持向量机实现骨骺发育分级的自动化评估[J].法医学杂志,2014,30(6):422-426. doi:10.3969/j.issn.1004-5619.2014.06.005 . |
WANG Y H, WANG Z S, WEI H, et al. Automated assessment of developmental levels of epiphysis by support vector machine[J]. Fayixue Zazhi,2014,30(6):422-426. | |
3 | LARSON D B, CHEN M C, LUNGREN M P, et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs[J]. Radiology,2018,287(1):313-322. doi:10.1148/radiol.2017170236 . |
4 | LIU Z Q, HU Z J, WU T Q, et al. Bone age recognition based on mask R-CNN using xception regression model[J]. Front Physiol,2023,14:1062034. doi:10.3389/fphys.2023.1062034 . |
5 | 欧阳镇,唐麟锡,刘宝林. 肘部骨骼年龄判定方法的研究[J].中国法医学杂志,1987,2(2):81-85. doi:10.13618/j.issn.1001-5728.1987.02.005 . |
OUYANG Z, TANG L X, LIU B L. A study of the elbow bone age determination[J]. Zhongguo Fa-yixue Zazhi,1987,2(2):81-85. | |
6 | SAUVEGRAIN J, NAHUM H, BRONSTEIN H. Study of bone maturation of the elbow[J]. Ann Radiol (Paris),1962,5:542-550. |
7 | JANG W Y, AHN K S, OH S, et al. Difference between bone age at the hand and elbow at the onset of puberty[J]. Medicine (Baltimore),2022,101(1):e28516. doi:10.1097/MD.0000000000028516 . |
8 | SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell,2017,39(4):640-651. doi:10.1109/TPAMI.2016.2572683 . |
9 | PENG L Q, GUO Y C, WAN L, et al. Forensic bone age estimation of adolescent pelvis X-rays based on two-stage convolutional neural network[J]. Int J Legal Med,2022,136(3):797-810. doi:10.1007/s00414-021-02746-1 . |
10 | SPAMPINATO C, PALAZZO S, GIORDANO D, et al. Deep learning for automated skeletal bone age assessment in X-ray images[J]. Med Image Anal,2017,36:41-51. doi:10.1016/j.media.2016.10.010 . |
11 | AHN K S, BAE B, JANG W Y, et al. Assessment of rapidly advancing bone age during puberty on elbow radiographs using a deep neural network model[J]. Eur Radiol,2021,31(12):8947-8955. doi:10.1007/s00330-021-08096-1 . |
12 | CHOI G, HAM S, JE B K, et al. Olecranon bone age assessment in puberty using a lateral elbow radiograph and a deep-learning model[J]. Eur Radiol,2024,34(10):6396-6406. doi:10.1007/s00330-024-10748-x . |
13 | 中国学生体质与健康调研组. 2005年中国学生体质与健康调研报告[M].北京:高等教育出版社,2007:228-232. |
Research Group of Physical Fitness and Health in Chinese Students. Report on the physical fitness and health surveillance of Chinese students in 2005[M]. Beijing: Higher Educaion Press,2007:228-232. | |
14 | RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[EB/OL]. (2015-05-18)[2024-10-16]. doi:10.48550/arXiv.1505.04597 . . |
15 | NEMANI P, VOLLALA S. Medical image segmentation using LeViT-UNet++: A case study on GI tract data[EB/OL]. (2022-09-15)[2024-10-16]. doi:10.48550/arXiv.2209.07515 . . |
16 | CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. (2021-02-08)[2024-10-16]. doi:10.48550/arXiv.2102.04306 . . |
17 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2024-10-16]. doi:10.48550/arXiv.1409.1556 . . |
18 | SZEGEDY C, VANHOUCKE V, IOFFE S,et al. Rethinking the Inception architecture for computer vision[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,NV, USA,2016:2818-2826. doi:10.1109/CVPR.2016.308 . |
19 | HE K, ZHANG X, REN S,et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,2016:770-778. doi:10.1109/CVPR.2016.90 . |
20 | HUANG G, LIU Z, VAN DER MAATEN L,et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017:2261-2269. doi:10.1109/CVPR.2017.243 . |
21 | DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA,2009:248-255. doi:10.1109/CVPR.2009.5206848 . |
22 | 王亚辉,陈腾. 法医学活体年龄推断研究前沿与挑战[J].法医学杂志,2024,40(2):109-111. doi:10.12116/j.issn.1004-5619.2024.240410 . |
WANG Y H, CHEN T. Research frontiers and challenges of living age estimation in forensic science[J]. Fayixue Zazhi,2024,40(2):109-111. | |
23 | 李丹阳,潘宇,周慧明,等. 医学统计和机器学习方法在活体年龄推断中的应用[J].法医学杂志,2024,40(2):118-127. doi:10.12116/j.issn.1004-5619.2023.231103 . |
LI D Y, PAN Y, ZHOU H M, et al. Application of medical statistical and machine learning methods in the age estimation of living individuals[J]. Fayixue Zazhi,2024,40(2):118-127. |
[1] | Zhi-lu ZHOU, Dong-fei ZHANG, Jie-min CHEN, Ya-hui WANG, Hong-xia HAO, Tai-ang LIU, Yu-heng HE, Ding-nian LONG, Rui-jue LIU, Lei WAN. MRI Application in Quantification of Epiphyseal Development in the Wrist and Bone Age Estimation of Han Male Adolescents in East China [J]. Journal of Forensic Medicine, 2024, 40(6): 589-596. |
[2] | Jia-xuan HAN, Shi-hui SHEN, Yi-wen WU, Xiao-dan SUN, Tian-nan CHEN, Jiang TAO. Adolescents and Children Age Estimation Using Machine Learning Based on Pulp and Tooth Volumes on CBCT Images [J]. Journal of Forensic Medicine, 2024, 40(2): 143-148. |
[3] | Lei SHI, Ye XUE, Li-rong QIU, Ting LU, Fei FAN, Yu-chi ZHOU, Zhen-hua DENG. Research Progress on Dental Age Estimation Based on MRI Technology [J]. Journal of Forensic Medicine, 2024, 40(2): 112-117. |
[4] | Xuan WEI, Yu-shan CHEN, Jie DING, Chang-xing SONG, Jun-jing WANG, Zhao PENG, Zhen-hua DENG, Xu YI, Fei FAN. Age Estimation by Machine Learning and CT-Multiplanar Reformation of Cranial Sutures in Northern Chinese Han Adults [J]. Journal of Forensic Medicine, 2024, 40(2): 128-134. |
[5] | Yu-xin GUO, Wen-qing BU, Yu TANG, Di WU, Hui YANG, Hao-tian MENG, Yu-cheng GUO. Dental Age Estimation in Northern Chinese Han Children and Adolescents Using Demirjian’s Method Combined with Machine Learning Algorithms [J]. Journal of Forensic Medicine, 2024, 40(2): 135-142. |
[6] | Dan-yang LI, Yu PAN, Hui-ming ZHOU, Lei WAN, Cheng-tao LI, Mao-wen WANG, Ya-hui WANG. Application of Medical Statistical and Machine Learning Methods in the Age Estimation of Living Individuals [J]. Journal of Forensic Medicine, 2024, 40(2): 118-127. |
[7] | Huai-han ZHANG, Yong-jie CAO, Ji ZHANG, Jian XIONG, Ji-wei MA, Xiao-tong YANG, Ping HUANG, Yong-gang MA. Adults Ischium Age Estimation Based on Deep Learning and 3D CT Reconstruction [J]. Journal of Forensic Medicine, 2024, 40(2): 154-163. |
[8] | De-min HUO, Kai-jun MA, Jing-lan XU, Xu SONG, Xiao-yan MAO, Xia LIU, Kai-fang ZHAO, Jian ZHANG, Meng DU. Determining Whether an Individual is 18 Years or Older Based on the Third Molar Root Pulp Visibility in East China [J]. Journal of Forensic Medicine, 2024, 40(2): 149-153. |
[9] | Yi-hang HUANG, Wei-bo LIANG, Hui JIAN, Sheng-qiu QU. Modeling Methods and Influencing Factors for Age Estimation Based on DNA Methylation [J]. Journal of Forensic Medicine, 2023, 39(6): 601-607. |
[10] | Xing-yu MA, Hao CHENG, Zhong-duo ZHANG, Ye-ming LI, Dong ZHAO. Research Progress of Metabolomics Techniques Combined with Machine Learning Algorithm in Wound Age Estimation [J]. Journal of Forensic Medicine, 2023, 39(6): 596-600. |
[11] | Zi-wei WANG, Cheng-tao LI, Xi-ling LIU. Cross-Platform Application of DNA Methylation Age Estimation Model in Eastern Chinese Han Population [J]. Journal of Forensic Medicine, 2023, 39(5): 441-446. |
[12] | Yong-gang MA, Yong-jie CAO, Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG, Ji ZHANG. Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning [J]. Journal of Forensic Medicine, 2023, 39(2): 129-136. |
[13] | Hong-xia HAO, Ya-hui WANG, Zhi-lu ZHOU, Tai-ang LIU, Jin CHEN, Yu-heng HE, Lei WAN, Wen-tao XIA. Research Progress of Age Estimation in the Living by Knee Joint MRI [J]. Journal of Forensic Medicine, 2023, 39(1): 66-71. |
[14] | Zi-wei WANG, Qian-nan XU, Cheng-tao LI, Xi-ling LIU. Age Estimation Based on DNA Methylation and Its Application Prospects in Forensic Medicine [J]. Journal of Forensic Medicine, 2023, 39(1): 72-82. |
[15] | Xiao-tong YANG, Cheng-hui SUN, Yong-gang MA, Yong-jie CAO, Jian XIONG, Ji ZHANG, Ping HUANG. Sex Estimation of Han Adults in Western China Based on Three-Dimensional Cranial CT Reconstruction [J]. Journal of Forensic Medicine, 2023, 39(1): 27-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||