Journal of Forensic Medicine ›› 2025, Vol. 41 ›› Issue (5): 443-455.DOI: 10.12116/j.issn.1004-5619.2025.550403
• Topic on Microbiomics • Previous Articles
Han ZHANG1,2(
), Xin HUANG1,2(
), An-qi CHEN1,2, Ji CHEN1,2, Yan-fang LU1,2, Jian-ye ZENG1,2, Xiang WANG1,2(
)
Received:2025-04-14
Online:2026-01-27
Published:2025-10-25
Contact:
Xiang WANG
CLC Number:
Han ZHANG, Xin HUANG, An-qi CHEN, Ji CHEN, Yan-fang LU, Jian-ye ZENG, Xiang WANG. Skin Microbiome: Expanding Dimensions and Challenges in Forensic Evidence[J]. Journal of Forensic Medicine, 2025, 41(5): 443-455.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2025.550403
| [1] | SESSITSCH A, WAKELIN S, SCHLOTER M, et al. Microbiome interconnectedness throughout environments with major consequences for healthy people and a healthy planet[J]. Microbiol Mol Biol Rev,2023,87(3):e00212-22. doi:10.1128/mmbr. 00212-22 . |
| [2] | WILDE J, SLACK E, FOSTER K R. Host control of the microbiome: Mechanisms, evolution, and disease[J]. Science,2024,385(6706):eadi3338. doi:10.1126/science.adi3338 . |
| [3] | GOLDMAN A L, FULK E M, MOMPER L M, et al. Microbial sensor variation across biogeochemical conditions in the terrestrial deep subsurface[J]. mSystems,2024,9(1):e00966-23. doi:10.1128/msystems.00966-23 . |
| [4] | RÉTHI-NAGY Z, JUHÁSZ S. Microbiome’s Universe: Impact on health, disease and cancer treatment[J]. J Biotechnol,2024,392:161-179. doi:10. 1016/j.jbiotec.2024.07.002 . |
| [5] | TOWNSEND E C, KALAN L R. The dynamic balance of the skin microbiome across the lifespan[J]. Biochem Soc Trans,2023,51(1):71-86. doi:10. 1042/BST20220216 . |
| [6] | BYRD A L, BELKAID Y, SEGRE J A. The human skin microbiome[J]. Nat Rev Microbiol,2018,16(3):143-155. doi:10.1038/nrmicro.2017.157 . |
| [7] | ZHENG Y L, SHI J L, CHEN Q, et al. Identifying individual-specific microbial DNA fingerprints from skin microbiomes[J]. Front Microbiol,2022,13:960043. doi:10.3389/fmicb.2022.960043 . |
| [8] | SANTIAGO-RODRIGUEZ T M, LE FRANÇOIS B, MACKLAIM J M, et al. The skin microbiome: Current techniques, challenges, and future directions[J]. Microorganisms,2023,11(5):1222. doi:10.3390/microorganisms11051222 . |
| [9] | LI H, ZHOU S Y D, NEILSON R, et al. Skin microbiota interact with microbes on office surfaces[J]. Environ Int,2022,168:107493. doi:10.1016/j.envint. 2022.107493 . |
| [10] | PROCOPIO N, LOVISOLO F, SGUAZZI G, et al. “Touch microbiome” as a potential tool for forensic investigation: A pilot study[J]. J Forensic Leg Med,2021,82:102223. doi:10.1016/j.jflm. 2021.102223 . |
| [11] | ZHANG J, LIU W L, SIMAYIJIANG H, et al. Application of microbiome in forensics[J]. Genomics Proteomics Bioinformatics,2023,21(1):97-107. doi:10.1016/j.gpb.2022.07.007 . |
| [12] | GRICE E A, SEGRE J A. The skin microbiome[J]. Nat Rev Microbiol,2011,9(4):244-253. doi:10.10 38/nrmicro2537 . |
| [13] | OH J, BYRD A L, PARK M, et al. Temporal stability of the human skin microbiome[J]. Cell,2016,165(4):854-866. doi:10.1016/j.cell.2016.04.008 . |
| [14] | MACGIBENY M A, ADJEI S, PYLE H, et al. The human skin microbiome in health[J]. J Am Acad Dermatol,2025,93(2):329-336. doi:10.1016/j.jaad.2024.07.1498 . |
| [15] | LECUIT M, ELOIT M. The human virome: New tools and concepts[J]. Trends Microbiol,2013,21(10):510-515. doi:10.1016/j.tim.2013.07.001 . |
| [16] | EL-MOAMLY A, EL-SWIFY O. Raising awareness of Demodex mites: A neglected cause of skin disease[J]. Infection,2025,53(4):1273-1298. doi:10.1007/s15010-025-02521-z . |
| [17] | TUOR M, LEIBUNDGUT-LANDMANN S. The skin mycobiome and intermicrobial interactions in the cutaneous niche[J]. Curr Opin Microbiol,2023,76:102381. doi:10.1016/j.mib.2023.102381 . |
| [18] | CALLEWAERT C, RAVARD HELFFER K, LEBARON P. Skin microbiome and its interplay with the environment[J]. Am J Clin Dermatol,2020,21(S1):4-11. doi:10.1007/s40257-020-00551-x . |
| [19] | HAYKAL D, CARTIER H, DRÉNO B. Dermatological health in the light of skin microbiome evolution[J]. J Cosmet Dermatol,2024,23(12):3836-3846. doi:10.1111/jocd.16557 . |
| [20] | DO T H, MA F Y, ANDRADE P R, et al. TREM2 macrophages induced by human lipids drive inflammation in acne lesions[J]. Sci Immunol,2022,7(73):eabo2787. doi:10.1126/sciimmunol.abo 2787 . |
| [21] | GILABERTE Y, PIQUERO-CASALS J, SCHALKA S, et al. Exploring the impact of solar radiation on skin microbiome to develop improved photoprotection strategies[J]. Photochem Photobiol,2025,101(1):38-52. doi:10.1111/php.13962 . |
| [22] | NENCIARINI S, RIVERO D, CICCIONE A, et al. Impact of cooperative or competitive dynamics between the yeast Saccharomyces cerevisiae and lactobacilli on the immune response of the host[J]. Front Immunol,2024,15:1399842. doi:10.3389/fimmu.2024.1399842 . |
| [23] | ALMOUGHRABIE S, CAU L, CAVAGNERO K, et al. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function[J]. Sci Adv,2023,9(33):eadg6262. doi:10. 1126/sciadv.adg6262 . |
| [24] | DOMINGUEZ-BELLO M G, COSTELLO E K, CONTRERAS M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci USA,2010,107(26):11971-11975. doi:10.1073/pnas.1002601107 . |
| [25] | HU X Y, TANG M, DONG K, et al. Changes in the skin microbiome during male maturation from 0 to 25 years of age[J]. Skin Res Technol,2023,29(9):e13432. doi:10.1111/srt.13432 . |
| [26] | ALKEMA W, BOEKHORST J, EIJLANDER R T, et al. Charting host-microbe co-metabolism in skin aging and application to metagenomics data[J]. PLoS One,2021,16(11):e0258960. doi:10.1371/journal.pone.0258960 . |
| [27] | HANSSEN E N, LYLE R, EGELAND T, et al. Degradation in forensic trace DNA samples explored by massively parallel sequencing[J]. Forensic Sci Int Genet,2017,27:160-166. doi:10.1016/j.fsigen.2017.01.002 . |
| [28] | SANGWAN A, SINGH S P, SINGH P, et al. Role of molecular techniques in PMI estimation: An update[J]. J Forensic Leg Med,2021,83:102251. doi:10.1016/j.jflm.2021.102251 . |
| [29] | BOXBERGER M, CENIZO V, CASSIR N, et al. Challenges in exploring and manipulating the human skin microbiome[J]. Microbiome,2021,9(1):125. doi:10.1186/s40168-021-01062-5 . |
| [30] | FREDRICKS D N. Microbial ecology of human skin in health and disease[J]. J Investig Dermatol Symp Proc,2001,6(3):167-169. doi:10.1046/j.0022-202x.2001.00039.x . |
| [31] | HAMPTON - MARCELL J T, LARSEN P, ANTON T, et al. Detecting personal microbiota signatures at artificial crime scenes[J]. Forensic Sci Int,2020,313:110351. doi:10.1016/j.forsciint.2020.110351 . |
| [32] | LIU R N, GU Y X, SHEN M W, et al. Predicting postmortem interval based on microbial community sequences and machine learning algorithms[J]. Environ Microbiol,2020,22(6):2273-2291. doi:10.1111/1462-2920.15000 . |
| [33] | BARTOŠ O, CHMEL M, SWIERCZKOVÁ I. The overlooked evolutionary dynamics of 16S rRNA revises its role as the “gold standard” for bacterial species identification[J]. Sci Rep,2024,14(1):9067. doi:10.1038/s41598-024-59667-3 . |
| [34] | WANG H Y, DU P C, LI J, et al. Comparative analysis of microbiome between accurately identified 16S rDNA and quantified bacteria in simulated samples[J]. J Med Microbiol,2014,63(3):433-440. doi:10.1099/jmm.0.060616-0 . |
| [35] | BRAUN P, NGUYEN M D T, WALTER M C, et al. Ultrasensitive detection of Bacillus anthracis by real-time PCR targeting a polymorphism in multi-copy 16S rRNA genes and their transcripts[J]. Int J Mol Sci,2021,22(22):12224. doi:10.3390/ijms 222212224 . |
| [36] | JOHNSON J S, SPAKOWICZ D J, HONG B Y, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis[J]. Nat Commun,2019,10(1):5029. doi:10.1038/s41467-019-13036-1 . |
| [37] | ZHANG H, WANG X, CHEN A Q, et al. Comparison of the full-length sequence and sub-regions of 16S rRNA gene for skin microbiome profiling[J]. mSystems,2024,9(7):e00399-24. doi:10.1128/msystems.00399-24 . |
| [38] | FITZ-GIBBON S, TOMIDA S, CHIU B H, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne[J]. J Investig Dermatol,2013,133(9):2152-2160. doi:10.1038/jid.2013.21 . |
| [39] | DOU S J, MA G J, LIANG Y, et al. Preliminary exploratory research on the application value of oral and intestinal meta-genomics in predicting subjectsʼ occupations - A case study of the distinction between students and migrant workers[J]. Front Microbiol,2024,14:1330603. doi:10.3389/fmicb.2023.1330603 . |
| [40] | CARRATTO T M T, MORAES V M S, RECALDE T S F, et al. Applications of massively parallel sequencing in forensic genetics[J]. Genet Mol Biol,2022,45(3S1):e20220077. doi:10.1590/1678-4685-GMB-2022-0077 . |
| [41] | REGUEIRA-IGLESIAS A, BALSA-CASTRO C, BLANCO-PINTOS T, et al. Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis[J]. Mol Oral Microbiol,2023,38(5):347-399. doi:10.1111/omi.12434 . |
| [42] | HUGHES J B, HELLMANN J J, RICKETTS T H, et al. Counting the uncountable: Statistical approaches to estimating microbial diversity[J]. Appl Environ Microbiol,2001,67(10):4399-4406. doi:10.1128/AEM.67.10.4399-4406.2001 . |
| [43] | EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods,2013,10(10):996-998. doi:10.1038/nmeth. 2604 . |
| [44] | CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nat Methods,2016,13(7):581-583. doi:10.1038/nmeth.3869 . |
| [45] | DE SANCTIS B, MONEY D, PEDERSEN M W, et al. A theoretical analysis of taxonomic binning accuracy[J]. Mol Ecol Resour,2022,22(6):2208-2219. doi:10.1111/1755-0998.13608 . |
| [46] | GWAK H J, LEE S J, RHO M. Application of computational approaches to analyze metagenomic data[J]. J Microbiol,2021,59(3):233-241. doi:10. 1007/s12275-021-0632-8 . |
| [47] | YORKI S, SHEA T, CUOMO C A, et al. Comparison of long- and short-read metagenomic assembly for low-abundance species and resistance genes[J]. Brief Bioinform,2023,24(2):bbad050. doi:10.1093/bib/bbad050 . |
| [48] | XIA Y, LI X, WU Z Q, et al. Strategies and tools in illumina and nanopore-integrated metagenomic analysis of microbiome data[J]. Imeta,2023,2(1):e72. doi:10.1002/imt2.72 . |
| [49] | WATANABE H, NAKAMURA I, MIZUTANI S, et al. Minor taxa in human skin microbiome contribute to the personal identification[J]. PLoS One,2018,13(7):e0199947. doi:10.1371/journal.pone. 0199947 . |
| [50] | FIERER N, HAMADY M, LAUBER C L, et al. The influence of sex, handedness, and washing on the diversity of hand surface bacteria[J]. Proc Natl Acad Sci USA,2008,105(46):17994-17999. doi:10.1073/pnas.0807920105 . |
| [51] | ZHANG H, CHEN A Q, LI S L, et al. Spatio-temporal change of skin and oral microbiota: A longitudinal study of microbial diversity and stability[J]. Electrophoresis,2025,46(1/2):92-103. doi:10.1002/elps.202400160 . |
| [52] | WILKINS D, TONG X Z, LEUNG M H Y, et al. Diurnal variation in the human skin microbiome affects accuracy of forensic microbiome matching[J]. Microbiome,2021,9(1):129. doi:10.1186/s40168-021-01082-1 . |
| [53] | SCHMEDES S E, WOERNER A E, BUDOWLE B. Forensic human identification using skin microbiomes[J]. Appl Environ Microbiol,2017,83(22):e01672-17. doi:10.1128/AEM.01672-17 . |
| [54] | SHERIER A J, WOERNER A E, BUDOWLE B. Determining informative microbial single nucleotide polymorphisms for human identification[J]. Appl Environ Microbiol,2022,88(7):e00052-22. doi:10.1128/ aem.00052-22 . |
| [55] | YANG J Y, TSUKIMI T, YOSHIKAWA M, et al. Cutibacterium acnes (Propionibacterium acnes) 16S rRNA genotyping of microbial samples from possessions contributes to owner identification[J]. mSystems,2019,4(6):e00594-19. doi:10.1128/mSystems.00594-19 . |
| [56] | TOYOMANE K, YOKOTA R, WATANABE K, et al. Evaluation of CRISPR diversity in the human skin microbiome for personal identification[J]. mSystems,2021,6(1):e01255-20. doi:10.1128/mSystems.01255-20 . |
| [57] | TOYOMANE K, KIMURA Y, FUKAGAWA T, et al. Metagenomic sequencing of CRISPRs as a new marker to aid in personal identification with low-biomass samples[J]. mSystems,2024,9(11):e01038-24. doi:10.1128/msystems.01038-24 . |
| [58] | GRAHAM E H, CLARKE J L, FERNANDO S C, et al. The application of the skin virome for human identification[J]. Forensic Sci Int Genet,2022,57:102662. doi:10.1016/j.fsigen.2022.102662 . |
| [59] | HYDE E R, HAARMANN D P, LYNNE A M, et al. The living dead: Bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition[J]. PLoS One,2013,8(10):e77733. doi:10.1371/journal.pone.0077733 . |
| [60] | PECHAL J L, CRIPPEN T L, BENBOW M E, et al. The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing[J]. Int J Leg Med,2014,128(1):193-205. doi:10.1007/s00414-013-08 72-1 . |
| [61] | JOHNSON H R, TRINIDAD D D, GUZMAN S, et al. A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval[J]. PLoS One,2016,11(12):e01673 70. doi:10.1371/journal.pone.0167370 . |
| [62] | BURCHAM Z M, BELK A D, MCGIVERN B B, et al. A conserved interdomain microbial network underpins cadaver decomposition despite environmental variables[J]. Nat Microbiol,2024,9(3):595-613. doi:10.1038/s41564-023-01580-y . |
| [63] | ZHANG J, WANG M C, QI X Q, et al. Predicting the postmortem interval of burial cadavers based on microbial community succession[J]. Forensic Sci Int Genet,2021,52:102488. doi:10.1016/j.fsigen. 2021.102488 . |
| [64] | HOSPODSKY D, PICKERING A J, JULIAN T R, et al. Hand bacterial communities vary across two different human populations[J]. Microbiology(Reading),2014,160(6):1144-1152. doi:10.1099/mic.0.075390-0 . |
| [65] | OGAI K, NANA B C, LLOYD Y M, et al. Skin microbiome profile of healthy Cameroonians and Japanese[J]. Sci Rep,2022,12:1364. doi:10. 1038/s41598-022-05244-5 . |
| [66] | YING S, ZENG D N, CHI L, et al. The influence of age and gender on skin-associated microbial communities in urban and rural human populations[J]. PLoS One,2015,10(10):e0141842. doi:10.1371/journal.pone.0141842 . |
| [67] | ZENG B, ZHAO J C, GUO W, et al. High-altitude living shapes the skin microbiome in humans and pigs[J]. Front Microbiol,2017,8:1929. doi:10.3389/fmicb.2017.01929 . |
| [68] | WALKER A R, DATTA S. Identification of city specific important bacterial signature for the MetaSUB CAMDA challenge microbiome data[J]. Biol Direct,2019,14(1):11. doi:10.1186/s13062-019-02 43-z . |
| [69] | 董新宇,朱如心,雷印蕾,等. 利用人体皮肤及口腔微生物群进行地理溯源[J].法医学杂志,2023,39(6):557-563. doi:10.12116/j.issn.1004-5619.2023.530401 . |
| DONG X Y, ZHU R X, LEI Y L, et al. Traceability of geographic origin using human skin and oral microbiota[J]. Fayixue Zazhi,2023,39(6):557-563. | |
| [70] | CHASE J, FOUQUIER J, ZARE M, et al. Geography and location are the primary drivers of office microbiome composition[J]. mSystems,2016,1(2):e00022-16. doi:10.1128/mSystems.00022-16 . |
| [71] | PEIMBERT M, ALCARAZ L D. Where environmental microbiome meets its host: Subway and passenger microbiome relationships[J]. Mol Ecol,2023,32(10):2602-2618. doi:10.1111/mec.16440 . |
| [72] | GOGA H. Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners[J]. Int J Legal Med,2012,126(5):815-823. doi:10.1007/s004 14-012-0733-3 . |
| [73] | NECKOVIC A, VAN OORSCHOT R A H, SZKUTA B, et al. Investigation of direct and indirect transfer of microbiomes between individuals[J]. Forensic Sci Int Genet,2020,45:102212. doi:10. 1016/j.fsigen.2019.102212 . |
| [74] | NECKOVIC A, VAN OORSCHOT R A H, SZKUTA B, et al. Investigation into the presence and transfer of microbiomes within a forensic laboratory setting[J]. Forensic Sci Int Genet,2021,52:102492. doi:10.1016/j.fsigen.2021.102492 . |
| [75] | PROCOPIO N, SGUAZZI G, ERIKSSON E V, et al. Transferability of human and environmental microbiome on clothes as a tool for forensic investigations[J]. Genes(Basel),2024,15(3):375. doi:10. 3390/genes15030375 . |
| [76] | KARADAYı S, YıLMAZ İ, ÖZBEK T, et al. Transfer and persistence of microbiota markers from the human hand to the knife: A preliminary study[J]. J Forensic Leg Med,2024,107:102757. doi:10.1016/j.jflm.2024.102757 . |
| [77] | KODAMA W A, XU Z J, METCALF J L, et al. Trace evidence potential in postmortem skin microbiomes: From death scene to morgue[J]. J Forensic Sci,2019,64(3):791-798. doi:10.1111/1556-4029.13949 . |
| [78] | ROSS A A, DOXEY A C, NEUFELD J D. The skin microbiome of cohabiting couples[J]. mSystems,2017,2(4):e00043-17. doi:10.1128/mSystems. 00043-17 . |
| [79] | WILLIAMS D W, GIBSON G. Classification of individuals and the potential to detect sexual contact using the microbiome of the pubic region[J]. Forensic Sci Int Genet,2019,41:177-187. doi:10.1016/j.fsigen.2019.05.004 . |
| [80] | TURNBAUGH P J, LEY R E, HAMADY M, et al. The human microbiome project[J]. Nature,2007,449:804-810. doi:10.1038/nature06244 . |
| [81] | CAPONE K A, DOWD S E, STAMATAS G N, et al. Diversity of the human skin microbiome early in life[J]. J Invest Dermatol,2011,131(10):2026-2032. doi:10.1038/jid.2011.168 . |
| [82] | PROHIC A, SIMIC D, SADIKOVIC T J, et al. Distribution of Malassezia species on healthy human skin in Bosnia and Herzegovina: Correlation with body part, age and gender[J]. Iran J Microbiol,2014,6(4):253-262. |
| [83] | SHE J J, LIU W X, DING X M, et al. Defining the biogeographical map and potential bacterial translocation of microbiome in human ‘surface organs’[J]. Nat Commun,2024,15(1):427. doi:10.10 38/s41467-024-44720-6 . |
| [84] | KLASSERT T E, ZUBIRIA-BARRERA C, DENKEL L, et al. Skin dysbiosis and loss of microbiome site specificity in critically ill patients[J]. Microbiol Spectr,2024,12(3):e03078-23. doi:10. 1128/spectrum.03078-23 . |
| [85] | OZKAN J, WILLCOX M, WEMHEUER B, et al. Biogeography of the human ocular microbiota[J]. Ocul Surf,2019,17(1):111-118. doi:10.1016/j.jtos. 2018.11.005 . |
| [86] | LEE H, JEONG J, OH Y, et al. Comparative analysis of human facial skin microbiome between topical sites compared to entire face[J]. Genes Genomics,2021,43(12):1483-1495. doi:10.1007/s132 58-021-01180-2 . |
| [87] | BRINKAC L, CLARKE T H, SINGH H, et al. Spatial and environmental variation of the human hair microbiota[J]. Sci Rep,2018,8:9017. doi:10.1038/s41598-018-27100-1 . |
| [88] | GHEMRAWI M, TORRES A R, DUNCAN G, et al. The genital microbiome and its potential for detecting sexual assault[J]. Forensic Sci Int Genet,2021,51:102432. doi:10.1016/j.fsigen.2020.102432 . |
| [89] | DÍEZ LÓPEZ C, VIDAKI A, RALF A, et al. Novel taxonomy-independent deep learning microbiome approach allows for accurate classification of different forensically relevant human epithelial materials[J]. Forensic Sci Int Genet,2019,41:72-82. doi:10.1016/j.fsigen.2019.03.015 . |
| [90] | HUANG L T, HUANG H Y, LIANG X M, et al. Skin locations inference and body fluid identification from skin microbial patterns for forensic applications[J]. Forensic Sci Int,2024,362:112152. doi:10.1016/j.forsciint.2024.112152 . |
| [91] | YAO T, HAN X L, GUAN T S, et al. Exploration of the microbiome community for saliva, skin, and a mixture of both from a population living in Guangdong[J]. Int J Leg Med,2021,135(1):53-62. doi:10.1007/s00414-020-02329-6 . |
| [92] | KARADAYı S, ARASOGLU T, AKMAYAN İ, et al. Assessment of the exclusion potential of suspects by using microbial signature in sexual assault cases: A scenario-based experimental study[J]. Forensic Sci Int,2021,325:110886. doi:10.1016/j.forsciint.2021.110886 . |
| [93] | YAO H W, WANG Y Y, WANG S S, et al. A multiplex microbial profiling system for the identification of the source of body fluid and skin samples[J]. Forensic Sci Int Genet,2024,73:103124. doi:10.1016/j.fsigen.2024.103124 . |
| [94] | LIU Z Y, LIU J J, GENG J J, et al. Metatranscriptomic characterization of six types of forensic samples and its potential application to body fluid/tissue identification: A pilot study[J]. Forensic Sci Int Genet,2024,68:102978. doi:10.1016/j.fsigen. 2023.102978 . |
| [95] | HUANG S, HAIMINEN N, CARRIERI A P, et al. Human skin, oral, and gut microbiomes predict chronological age[J]. mSystems,2020,5(1):e00630-19. doi:10.1128/mSystems.00630-19 . |
| [96] | MYERS T, BOUSLIMANI A, HUANG S, et al. A multi-study analysis enables identification of potential microbial features associated with skin aging signs[J]. Front Aging,2024,4:1304705. doi:10.3389/fragi.2023.1304705 . |
| [97] | WU L, ZENG T S, DELIGIOS M, et al. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia[J]. mSphere,2020,5(1):e00558‑19. doi:10.1128/mSphere.00558-19 . |
| [98] | SWANEY M H, NEWMAN D J, MAO J H, et al. Aging-dependent skin microbiome alterations across body sites in a United Kingdom cohort[J]. Front Aging,2025,6:1644012. doi:10.3389/fragi.2025. 1644012 . |
| [99] | LIMA R D, HAJIARBABI K, DEN NG B, et al. Skin-associated commensal microorganisms and their metabolites[J]. J Appl Microbiol,2025,136(5):lxaf111. doi:10.1093/jambio/lxaf111 . |
| [100] | CARRIERI A P, HAIMINEN N, MAUDSLEY-BARTON S, et al. Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences[J]. Sci Rep,2021,11(1):4565. doi:10.1038/s41598-021-83922-6 . |
| [101] | KOH L F, ONG R Y, COMMON J E. Skin microbiome of atopic dermatitis[J]. Allergol Int,2022,71(1):31-39. doi:10.1016/j.alit.2021.11.001 . |
| [102] | EDSLEV S M, AGNER T, ANDERSEN P S. Skin microbiome in atopic dermatitis[J]. Acta Derm Venereol,2020,100(12):5769. doi:10.2340/00015 555-3514 . |
| [103] | TAO R, LI R Y, WAN Z, et al. Skin microbiome signatures associated with psoriasis and seborrheic dermatitis[J]. Exp Dermatol,2022,31(7):1116-1118. doi:10.1111/exd.14618 . |
| [104] | TAO R, LI R Y, WANG R J. Skin microbiome alterations in seborrheic dermatitis and dandruff: A systematic review[J]. Exp Dermatol,2021,30(10):1546-1553. doi:10.1111/exd.14450 . |
| [105] | XIONG J X, CHEN S, WANG P, et al. Characterisation of the bacterial microbiome in patients with rosacea and healthy controls[J]. Eur J Dermatol,2023,33(6):612-617. doi:10.1684/ejd.2023.4619 . |
| [106] | BAYAL N, NAGPAL S, HAQUE M M, et al. 16S rDNA based skin microbiome data of healthy individuals and leprosy patients from India[J]. Sci Data,2019,6(1):225. doi:10.1038/s41597-019-02 32-1 . |
| [107] | LEEM S, KEUM H L, SONG H J, et al. Skin aging-related microbial types separated by Cutibacterium and α-diversity[J]. J Cosmet Dermatol,2024,23(3):1066-1074. doi:10.1111/jocd.16070 . |
| [108] | NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science,2020,368(6494):973-980. doi:10.1126/science.aay9189 . |
| [109] | SUN Z, HUANG S, ZHU P F, et al. Species-resolved sequencing of low-biomass or degraded microbiomes using 2bRAD-M[J]. Genome Biol,2022,23(1):36. doi:10.1186/s13059-021-02576-9 . |
| [1] | . Precision Identification from a Multi-omics Perspective: Current Status, Challenges, and Prospects in Forensic Genetics ZHU Bo-feng [J]. Journal of Forensic Medicine, 2025, 41(5): 421-440. |
| [2] | Yan GAO, Fang CHEN, Wen-tao XIA, Xiao-ping YANG, Ze-yu WANG, Ze-ren YANG, Xia LIU, Yan-liang SHENG. Research Progress of Chirp ABR and Its Application in Forensic Auditory Identification [J]. Journal of Forensic Medicine, 2025, 41(4): 387-393. |
| [3] | Wen-yan LI, Jin-feng ZHAO, Wei-chen LIU, Shi-jing LÜ, Jia-xin ZHANG, Xu-dong ZHANG, Zhi-wen WEI, Ke-ming YUN, Chao ZHANG. Toxicokinetics of Chlorfenapyr and Its Metabolites in Rats [J]. Journal of Forensic Medicine, 2025, 41(4): 380-387. |
| [4] | Li-xia WEI, Bo LIU, Xiao-yuan YANG, Xi ZHANG, Yi-feng LAN, Chao ZHANG, Juan JIA, Dan ZHANG, Zhi-wen WEI, Ke-ming YUN, Zhe CHEN. Detection of Ketamine and Norketamine Using an Aptamer-Functionalized Graphene Oxide Fluorescent Sensor [J]. Journal of Forensic Medicine, 2025, 41(4): 326-339. |
| [5] | Jia-hao LI, Jiang LING, Zi-hao CAI, Zi-yuan ZHENG, Yan-jun DING. Fluorescent Probe Development for Rapid Detection of Tiletamine Based on Copper Nanozyme and Molecular Imprinting Technology [J]. Journal of Forensic Medicine, 2025, 41(4): 355-363. |
| [6] | Zi-wen GUO, Tian-yu QIU, Yue CAO. Rapid Identification of Etomidate and Its Structural Analogues Based on Surface-Enhanced Raman Spectroscopy and Machine Learning [J]. Journal of Forensic Medicine, 2025, 41(4): 364-370. |
| [7] | Tai-shen HE, Zhong-jiang LÜ, Yi-ming SUN, Yu-yang LI, Yi YE, Yao LIN, Lin-chuan LIAO. Rapid Analysis of Cyanide Based on a Ratiometric Fluorescent Probe Using Gold Nanoclusters-Fluorescein [J]. Journal of Forensic Medicine, 2025, 41(4): 340-347. |
| [8] | Meng-yao TANG, Bo-yu HUANG, Cui-mei LIU, Xue-yan LIU, Wei JIA, Zhen-dong HUA. Rapid Screening of Etomidate and Its Analogues Using a Portable Mass Spectrometer [J]. Journal of Forensic Medicine, 2025, 41(4): 348-354. |
| [9] | Jing-chun BAO, Jing-jing ZHAO, Jiao-yong LI, Jing-hua MENG, Xiao-long WANG, Xiao-ni ZHAN, Jun YAO, Xu WU. Construction of a Competency Evaluation Model for Forensic Practitioners [J]. Journal of Forensic Medicine, 2025, 41(4): 371-379. |
| [10] | Yi-ming TIAN, Yi-bo YAN, Di WEN, Yan SHI. Research Progress on the Application of Novel Functional Materials for Rapid Detection of New Psychoactive Substances [J]. Journal of Forensic Medicine, 2025, 41(4): 314-325. |
| [11] | Yi-fan BAI, He-miao ZHAO, Jing CHEN, Hong-di LIU, Rui-qin YANG, Chong WANG. Application of Forensic Transcriptomics in the Identification of Tissue Origin of Body Fluid Stains [J]. Journal of Forensic Medicine, 2025, 41(3): 260-266. |
| [12] | Qi LIAO, Yong-hong LIU, Ying JIAO, Xiao-ying YANG, Yi-hua YANG, Cui-mei LIU, Rui-xia GAO. Development of Benchtop Low‑Field Nuclear Magnetic Resonance Technology and Its Application in Drug Control Field [J]. Journal of Forensic Medicine, 2025, 41(3): 267-276. |
| [13] | Xuan-long CHEN, Qiang YUAN, Yong SUN, Die ZHANG, Jian-bin FU, Li-liang LI. Forensic Research Progress on Bongkrekic Acid Poisoning [J]. Journal of Forensic Medicine, 2025, 41(2): 111-119. |
| [14] | Shuai ZHANG, Hong-fei XU, Zhi-xiang ZHANG, Ying WANG, Shao-hua ZHU. Research on Doxorubicin-Induced Cardiotoxicity Mechanism and Its Forensic Application [J]. Journal of Forensic Medicine, 2025, 41(2): 120-126. |
| [15] | Yu-meng ZUO, Wei HAN, Jian-bo ZHANG, Tao LI. Molecular Mechanisms and Toxic Effects of Ketamine [J]. Journal of Forensic Medicine, 2025, 41(2): 127-135. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||