法医学杂志 ›› 2021, Vol. 37 ›› Issue (6): 776-787.DOI: 10.12116/j.issn.1004-5619.2021.310201
所属专题: 合成毒品的法医毒理学研究
收稿日期:
2021-01-29
发布日期:
2021-12-25
出版日期:
2021-12-28
通讯作者:
岳霞
作者简介:
岳霞,女,博士,主任法医师,主要从事法医学教学、科研和鉴定;E-mail:yiluyangguang@163.com基金资助:
Cui ZHANG(), Xu ZHAO, Hui-jun WANG, Xia YUE(
)
Received:
2021-01-29
Online:
2021-12-25
Published:
2021-12-28
Contact:
Xia YUE
摘要:
甲基苯丙胺(methamphetamine,METH)的毒性损伤和成瘾机制是法医毒理学关注的重点,而组学技术的发展为此类研究提供了新的平台。METH毒性损伤和成瘾在基因、核糖核酸(ribonucleic acid,RNA)转录、蛋白和代谢水平均有不同的体现。本文拟从基因组、转录组、代谢组、蛋白质组等多组学技术出发,总结其在METH损伤和成瘾相关研究中的成果与不足,并对多组学联合分析在METH毒性损伤和成瘾机制研究中的策略和优势进行论述,从而为METH的法医毒理学鉴定提供更多参考信息。
中图分类号:
张翠, 赵旭, 王慧君, 岳霞. 甲基苯丙胺毒性损伤和成瘾的组学研究进展[J]. 法医学杂志, 2021, 37(6): 776-787.
Cui ZHANG, Xu ZHAO, Hui-jun WANG, Xia YUE. Research Progress on the Omics of Methamphetamine Toxic Damage and Addiction[J]. Journal of Forensic Medicine, 2021, 37(6): 776-787.
1 | CARRASCO-RAMIRO F, PEIRÓ-PASTOR R, AGUADO B. Human genomics projects and precision medicine[J]. Gene Ther,2017,24(9):551-561. doi:10.1038/gt.2017.77. |
2 | HITZEMANN R, IANCU O D, REED C, et al. Regional analysis of the brain transcriptome in mice bred for high and low methamphetamine consumption[J]. Brain Sci,2019,9(7):155. doi:10.3390/brainsci90701555. |
3 | YAZDANI N, PARKER C C, SHEN Y, et al. Hnrnph1 is a quantitative trait gene for methamphetamine sensitivity[J]. PLoS Genet,2015,11(12):e1005713. doi:10.1371/journal.pgen.1005713. |
4 | RUAN Q T, YAZDANI N, REED E R, et al. 5' UTR variants in the quantitative trait gene Hnrnph1 support reduced 5' UTR usage and hnRNP H protein as a molecular mechanism underlying reduced me-thamphetamine sensitivity[J]. FASEB J,2020,34(7):9223-9244. doi:10.1096/fj.202000092R. |
5 | GUERIN A A, NESTLER E J, BERK M, et al. Genetics of methamphetamine use disorder: A systematic review and meta-analyses of gene association studies[J]. Neurosci Biobehav Rev,2021,120:48-74. doi:10.1016/j.neubiorev.2020.11.001. |
6 | JAYANTHI S, TORRES O V, LADENHEIM B, et al. A single prior injection of methamphetamine enhances methamphetamine self-administration (SA) and blocks SA-induced changes in DNA methylation and mRNA expression of potassium channels in the rat nucleus accumbens[J]. Mol Neurobiol,2020,57(3):1459-1472. doi:10.1007/s12035-019-01830-3. |
7 | GUIGO R, DE HOON M. Recent advances in functional genome analysis[J]. F1000Res,2018,7:1968. doi:10.12688/f1000research.15274.1. |
8 | 肖瑞森,黄平,李津伟,等. 毛发作为甲基苯丙胺吸毒成瘾生物检材证据的研究[J].中国药物滥用防治杂志,2017,23(2):85-88. doi:10.15900/j.cnki.zylf1995.2017.02.007. |
XIAO R S, HUANG P, LI J W, et al. Methamphetamine in the hair as a drug addict certification evidence research[J]. Zhongguo Yaowu Lanyong Fangzhi Zazhi,2017,23(2):85-88. | |
9 | HAN E, LEE S, IN S, et al. Relationship between methamphetamine use history and segmental hair analysis findings of MA users[J]. Forensic Sci Int,2015,254:59-67. doi:10.1016/j.forsciint.2015.06.029. |
10 | LIU L, LUO T, DONG H, et al. Genome-wide DNA methylation analysis in male methamphetamine users with different addiction qualities[J]. Front Psychiatry,2020,11:588229. doi:10.3389/fpsyt.2020.588229. |
11 | CHOI M R, CHUN J W, KWAK S M, et al. Effects of acute and chronic methamphetamine administration on cynomolgus monkey hippocampus structure and cellular transcriptome[J]. Toxicol Appl Pharmacol,2018,355:68-79. doi:10.1016/j.taap.2018.05.031. |
12 | ESKANDARIAN BOROUJENI M, PEIROUVI T, SHAERZADEH F, et al. Differential gene expression and stereological analyses of the cerebellum following methamphetamine exposure[J]. Addict Biol,2020,25(1):e12707. doi:10.1111/adb.12707. |
13 | KAYS J S, YAMAMOTO B K. Evaluation of microglia/macrophage cells from rat striatum and prefrontal cortex reveals differential expression of in-flammatory-related mRNA after methamphetamine[J]. Brain Sci,2019,9(12):340. doi:10.3390/brainsci9120340. |
14 | CADET J L, BRANNOCK C, LADENHEIM B, et al. Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later[J]. PLoS One,2014,9(1):e84665. doi:10.1371/journal.pone.0084665. |
15 | CADET J L, JAYANTHI S, MCCOY M T, et al. Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: Evidence from cDNA array[J]. Synapse,2001,41(1):40-48. doi:10.1002/syn.1058. |
16 | BREEN M S, UHLMANN A, NDAY C M, et al. Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: An integrative RNA-sequencing report[J]. Transl Psychiatry,2016,6(5):e802. doi:10.1038/tp.2016.67. |
17 | VISHNOI A, RANI S. MiRNA biogenesis and regulation of diseases: An overview[J]. Methods Mol Biol,2017,1509:1-10. doi:10.1007/978-1-4939-6524-3_1. |
18 | 张朋,徐星,毛紫娟,等. microRNAs在甲基苯丙胺滥用诱导神经退行性疾病中的研究进展[J].中国药物依赖性杂志,2017,26(6):411-417. doi:10.13936/j.cnki.cjdd1992.2017.06.002. |
ZHANG P, XU X, MAO Z J, et al. Research progress of microRNAs in neurodegenerative diseases induced by methamphetamine abuse[J]. Zhongguo Yao-wuyilaixing Zazhi,2017,26(6):411-417. | |
19 | GOWEN A M, ODEGAARD K E, HERNANDEZ J, et al. Role of microRNAs in the pathophysiology of addiction[J]. Wiley Interdiscip Rev RNA,2021,12(3):e1637. doi:10.1002/wrna.1637. |
20 | SIM M S, SOGA T, PANDY V, et al. MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens[J]. Metab Brain Dis,2017,32(6):1767-1783. doi:10.1007/s11011-017-0061-x. |
21 | ZHU L, ZHU J, LIU Y, et al. Chronic methamphetamine regulates the expression of microRNAs and putative target genes in the nucleus accumbens of mice[J]. J Neurosci Res,2015,93(10):1600-1610. doi:10.1002/jnr.23605. |
22 | SU H, ZHU L, LI J, et al. Regulation of microRNA-29c in the nucleus accumbens modulates methamphetamine-induced locomotor sensitization in mice[J]. Neuropharmacology,2019,148:160-168. doi:10.1016/j.neuropharm.2019.01.007. |
23 | LI J, ZHU L, SU H, et al. Regulation of miR-128 in the nucleus accumbens affects methamphe-tamine-induced behavioral sensitization by modulating proteins involved in neuroplasticity[J]. Addict Biol,2021,26(1):e12881. doi:10.1111/adb.12881. |
24 | RAGO L, BEATTIE R, TAYLOR V, et al. miR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin[J]. EMBO J,2014,33(8):906-920. doi:10.1002/embj.201386591. |
25 | BOSCH P J, BENTON M C, MACARTNEY-COXSON D, et al. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats[J]. BMC Neurosci,2015,16:43. doi:10.1186/s12868-015-0186-y. |
26 | ZHAO Y, ZHANG K, JIANG H, et al. Decreased expression of plasma microRNA in patients with methamphetamine (MA) use disorder[J]. J Neuroimmune Pharmacol,2016,11(3):542-548. doi:10.1007/s11481-016-9671-z. |
27 | SUN Q, ZHAO Y, ZHANG K, et al. An association study between methamphetamine use disorder with psychosis and polymorphisms in MiRNA[J]. Neurosci Lett,2020,717:134725. doi:10.1016/j.neulet.2019.134725. |
28 | GU W J, ZHANG C, ZHONG Y, et al. Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder[J]. Biomed Pharmacother,2020,125:109918. doi:10.1016/j.biopha.2020.109918. |
29 | KOPP F, MENDELL J T. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell,2018,172(3):393-407. doi:10.1016/j.cell.2018.01.011. |
30 | ZHOU H, WANG B, YANG Y X, et al. Long noncoding RNAs in pathological cardiac remodeling: A review of the update literature[J]. Biomed Res Int,2019,2019:7159592. doi:10.1155/2019/7159592. |
31 | CHEN Y, ZHOU J. LncRNAs: Macromolecules with big roles in neurobiology and neurological diseases[J]. Metab Brain Dis,2017,32(2):281-291. doi:10.1007/s11011-017-9965-8. |
32 | ZHU L, LI J, DONG N, et al. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice[J]. Sci Rep,2016,6:36993. doi:10.1038/srep36993. |
33 | YANG X, WANG Y, LI Q, et al. The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment[J]. Front Mol Neurosci,2018,11:186. doi:10.3389/fnmol.2018.00186. |
34 | XIONG K, LONG L, ZHANG X, et al. Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro[J]. Toxicol In Vitro,2017,44:1-10. doi:10.1016/j.tiv.2017.06.009. |
35 | LI J, ZHU L, GUAN F, et al. Relationship between schizophrenia and changes in the expression of the long non-coding RNAs Meg3, Miat, Neat1 and Neat2[J]. J Psychiatr Res,2018,106:22-30. doi:10.1016/j.jpsychires.2018.09.005. |
36 | LI R, JIANG J, SHI H, et al. CircRNA: A rising star in gastric cancer[J]. Cell Mol Life Sci,2020,77(9):1661-1680. doi:10.1007/s00018-019-03345-5. |
37 | SHAFABAKHSH R, MIRHOSSEINI N, CHAI-CHIAN S, et al. Could circRNA be a new biomarker for pre-eclampsia?[J]. Mol Reprod Dev,2019,86(12):1773-1780. doi:10.1002/mrd.23262. |
38 | SZABO L, MOREY R, PALPANT N J, et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development[J]. Genome Biol,2015,16(1):126. doi:10.1186/s13059-015-0690-5. |
39 | RYBAK-WOLF A, STOTTMEISTER C, GLAŽAR P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell,2015,58(5):870-885. doi:10.1016/j.molcel.2015.03.027. |
40 | SHAO Y, JIANG Y. Circular RNAs in toxicology[J]. Toxicol Sci,2020,179(2):149-161. doi:10.1093/toxsci/kfaa173. |
41 | LI J, SUN Q, ZHU S, et al. Knockdown of circ-Homer1 ameliorates METH-induced neuronal injury through inhibiting Bbc3 expression[J]. Neurosci Lett,2020,732:135050. doi:10.1016/j.neulet.2020.135050. |
42 | LI J, SHI Q, WANG Q, et al. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction[J]. Neurosci Lett,2019,701:146-153. doi:10.1016/j.neulet.2019.02.032. |
43 | BOROUJENI M E, NASROLLAHI A, BOROU-JENI P B, et al. Exposure to methamphetamine exacerbates motor activities and alters circular RNA profile of cerebellum[J]. J Pharmacol Sci,2020,144(1):1-8. doi:10.1016/j.jphs.2020.05.010. |
44 | HUANG R, ZHANG Y, HAN B, et al. Circular RNA HIPK2 regulates astrocyte activation via coopera-tion of autophagy and ER stress by targeting MIR124-2HG[J]. Autophagy,2017,13(10):1722-1741. doi:10.1080/15548627.2017.1356975. |
45 | STUART T, SATIJA R. Integrative single-cell analysis[J]. Nat Rev Genet,2019,20(5):257-272. doi:10.1038/s41576-019-0093-7. |
46 | DANG J, TIWARI S K, AGRAWAL K, et al. Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids[J]. Mol Psychiatry,2021,26(4):1194-1207. doi:10.1038/s41380-020-0676-x. |
47 | NIU M, MORSEY B, LAMBERTY B G, et al. Methamphetamine increases the proportion of SIV-infected microglia/macrophages, alters metabolic path-ways, and elevates cell death pathways: A single-cell analysis[J]. Viruses,2020,12(11):1297. doi:10.3390/v12111297. |
48 | TAY Y, RINN J, PANDOLFI P P. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature,2014,505(7483):344-352. doi:10.1038/nature12986. |
49 | SMILLIE C L, SIREY T, PONTING C P. Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk[J]. Crit Rev Biochem Mol Biol,2018,53(3):231-245. doi:10.1080/10409238.2018.1447542. |
50 | TEHRANI S S, EBRAHIMI R, AL-E-AHMAD A, et al. Competing endogenous RNAs (ceRNAs): Novel network in neurological disorders[J]. Curr Med Chem,2021,28(29):5983-6010. doi:10.2174/0929867328666201217141837. |
51 | SONG Y X, SUN J X, ZHAO J H, et al. Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion[J]. Nat Commun,2017,8(1):289. doi:10.1038/s41467-017-00304-1. |
52 | ZHANG Y, YU F, BAO S, et al. Systematic characterization of circular RNA-associated ceRNA network identified novel circRNA biomarkers in Alzheimer’s disease[J]. Front Bioeng Biotechnol,2019,7:222. doi:10.3389/fbioe.2019.00222. |
53 | KOBEISSY F H, WARREN M W, OTTENS A K, et al. Psychoproteomic analysis of rat cortex following acute methamphetamine exposure[J]. J Proteome Res,2008,7(5):1971-1983. doi:10.1021/pr800029h. |
54 | IWAZAKI T, MCGREGOR I S, MATSUMOTO I. Protein expression profile in the striatum of rats with methamphetamine-induced behavioral sensitization[J]. Proteomics,2007,7(7):1131-1139. doi:10.1002/pmic.200600595. |
55 | IWAZAKI T, MCGREGOR I S, MATSUMOTO I. Protein expression profile in the striatum of acute methamphetamine-treated rats[J]. Brain Res,2006,1097(1):19-25. doi:10.1016/j.brainres.2006.04.052. |
56 | IWAZAKI T, MCGREGOR I S, MATSUMOTO I. Protein expression profile in the amygdala of rats with methamphetamine-induced behavioral sensitization[J]. Neurosci Lett,2008,435(2):113-119. doi:10.1016/j.neulet.2008.02.025. |
57 | LI X, WANG H, QIU P, et al. Proteomic profiling of proteins associated with methamphetamine-induced neurotoxicity in different regions of rat brain[J]. Neurochem Int,2008,52(1/2):256-264. doi:10.1016/j.neuint.2007.06.014. |
58 | FAURE J J, HATTINGH S M, STEIN D J, et al. Proteomic analysis reveals differentially expressed proteins in the rat frontal cortex after methampheta-mine treatment[J]. Metab Brain Dis,2009,24(4):685-700. doi:10.1007/s11011-009-9167-0. |
59 | YANG M H, KIM S, JUNG M S, et al. Proteomic analysis of methamphetamine-induced reinforcement processes within the mesolimbic dopamine system[J]. Addict Biol,2008,13(3/4):287-294. doi:10.1111/j.1369-1600.2007.00090.x. |
60 | ZHANG F, CHEN L, LIU C, et al. Up-regulation of protein tyrosine nitration in methamphetamine-induced neurotoxicity through DDAH/ADMA/NOS pathway[J]. Neurochem Int,2013,62(8):1055-1064. doi:10.1016/j.neuint.2013.03.016. |
61 | ALASMARI F, ALSANEA S, MASOOD A, et al. Serum proteomic profiling of patients with amphetamine use disorder[J]. Drug Alcohol Dependence,2020,214:108157. doi:10.1016/j.drugalcdep.2020.108157. |
62 | PENDYALA G, BUESCHER J L, FOX H S. Methamphetamine and inflammatory cytokines increase neuronal Na+/K+-ATPase isoform 3: Relevance for HIV associated neurocognitive disorders[J]. PLoS One,2012,7(5):e37604. doi:10.1371/journal.pone.0037604. |
63 | POTTIEZ G, JAGADISH T, YU F, et al. Plasma proteomic profiling in HIV-1 infected methampheta-mine abusers[J]. PLoS One,2012,7(2):e31031. doi:10.1371/journal.pone.0031031. |
64 | PENDYALA G, TRAUGER S A, SIUZDAK G, et al. Short communication: Quantitative proteomic plasma profiling reveals activation of host defense to oxidative stress in chronic SIV and methampheta-mine comorbidity[J]. AIDS Res Hum Retroviruses,2011,27(2):179-182. doi:10.1089/aid.2010.0090. |
65 | BOSCH P J, PENG L F, KIVELL B M. Proteomics analysis of dorsal striatum reveals changes in synaptosomal proteins following methamphetamine self-administration in rats[J]. PLoS One,2015,10(10):e0139829. doi:10.1371/journal.pone.0139829. |
66 | ZHU R, YANG T, KOBEISSY F, et al. The effect of chronic methamphetamine exposure on the hippocampal and olfactory bulb neuroproteomes of rats[J]. PLoS One,2016,11(4):e0151034. doi:10.1371/journal.pone.0151034. |
67 | WEARNE T A, MIRZAEI M, FRANKLIN J L, et al. Methamphetamine-induced sensitization is associated with alterations to the proteome of the prefrontal cortex: Implications for the maintenance of psychotic disorders[J]. J Proteome Res,2015,14(1):397-410. doi:10.1021/pr500719f. |
68 | SHEN S, ZHANG M, MA M, et al. Potential neu-roprotective mechanisms of methamphetamine treat-ment in traumatic brain injury defined by large-scale IonStar-based quantitative proteomics[J]. Int J Mol Sci,2021,22(5):2246. doi:10.3390/ijms22052246. |
69 | PAPAGEORGIOU M, RAZA A, FRASER S, et al. Methamphetamine and its immune-modulating effects[J]. Maturitas,2019,121:13-21. doi:10.1016/j.maturitas.2018.12.003. |
70 | YANG L, GUO N, FAN W, et al. Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mito-chondria-mediated apoptosis in mice[J]. Neurotoxicology,2020,78:163-169. doi:10.1016/j.neuro.2020.03.006. |
71 | CHEN X, QIU F, ZHAO X, et al. Astrocyte-derived lipocalin-2 is involved in mitochondrion-related neuronal apoptosis induced by methampheta-mine[J]. ACS Chem Neurosci,2020,11(8):1102-1116. doi:10.1021/acschemneuro.9b00559. |
72 | SCHWARZBACH V, LENK K, LAUFS U. Me-thamphetamine-related cardiovascular diseases[J]. ESC Heart Fail,2020,7(2):407-414. doi:10.1002/ehf2.12572. |
73 | WISHART D S. Metabolomics for investigating physiological and pathophysiological processes[J]. Phy-siol Rev,2019,99(4):1819-1875. doi:10.1152/physrev.00035.2018. |
74 | CHEUNG P K, MA M H, TSE H F, et al. The applications of metabolomics in the molecular diagnostics of cancer[J]. Expert Rev Mol Diagn,2019,19(9):785-793. doi:10.1080/14737159.2019.1656530. |
75 | MCCLAY J L, ADKINS D E, VUNCK S A, et al. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with me-thamphetamine exposure[J]. Metabolomics,2013,9(2):392-402. doi:10.1007/s11306-012-0456-y. |
76 | ADKINS D E, MCCLAY J L, VUNCK S A, et al. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization[J]. Genes Brain Behav,2013,12(8):780-791. doi:10.1111/gbb.12081. |
77 | SHIBA T, YAMATO M, KUDO W, et al. In vivo imaging of mitochondrial function in methamphe-tamine-treated rats[J]. Neuroimage,2011,57(3):866-872. doi:10.1016/j.neuroimage.2011.05.041. |
78 | SHIMA N, MIYAWAKI I, BANDO K, et al. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat[J]. Toxicology,2011,287(1/2/3):29-37. doi:10.1016/j.tox.2011.05.012. |
79 | BU Q, LV L, YAN G, et al. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats[J]. Neurotoxicology,2013,36:17-23. doi:10.1016/j.neuro.2013.02.007. |
80 | CHEN J H, MICHIUE T, INAMORI-KAWAMOTO O, et al. Comprehensive investigation of postmortem glucose levels in blood and body fluids with regard to the cause of death in forensic autopsy cases[J]. Leg Med (Tokyo),2015,17(6):475-482. doi:10.1016/j.legalmed.2015.08.004. |
81 | 彭素芳,苏杭,陈天真,等. 甲基苯丙胺使用障碍者戒断期血清代谢组学特征分析[J].神经疾病与精神卫生,2018,18(11):764-767,封2. doi:10.3969/j.issn.1009-6574.2018.11.002. |
PENG S F, SU H, CHEN T Z, et al. Analysis of serum metabonomics in patients with methamphetamine induced withdrawal disorder in nervous system[J]. Shenjing Jibing Yu Jingshen Weisheng,2018,18(11):764-767,F2. | |
82 | ZHENG T, LIU L, SHI J, et al. The metabolic impact of methamphetamine on the systemic metabolism of rats and potential markers of methamphetamine abuse[J]. Mol Biosyst,2014,10(7):1968-1977. doi:10.1039/c4mb00158c. |
83 | YANG L, SHEN J, CHEN J, et al. Reduced glycolysis contributed to inhibition of testis spermatogenesis in rats after chronic methamphetamine exposure[J]. Med Sci Monit,2019,25:5453-5464. doi:10.12659/MSM.917491. |
84 | KASHYAP B, HANSON L R, FREY II W H. Intranasal insulin: A treatment strategy for addiction[J]. Neurotherapeutics,2020,17(1):105-115. doi:10.1007/s13311-019-00822-4. |
85 | LIN M, XU J, LIU X, et al. Metabolomics profiling of methamphetamine addicted human serum and three rat brain areas[J]. RSC Adv,2019,9:41107-41119. doi:10.1039/c9ra08096a. |
86 | JIANG L, GU H, LIN Y, et al. Remodeling of brain lipidome in methamphetamine-sensitized mice[J]. Toxicol Lett,2017,279:67-76. doi:10.1016/j.toxlet.2017.07.214. |
87 | JANG W J, CHOI J Y, PARK B, et al. Hair metabolomics in animal studies and clinical settings[J]. Molecules,2019,24(12):2195. doi:10.3390/molecules |
24122195. | |
88 | CHOI B, KIM S P, HWANG S, et al. Metabolic characterization in urine and hair from a rat model of methamphetamine self-administration using LC-QTOF-MS-based metabolomics[J]. Metabolomics,2017,13(10):119. doi:10.1007/s11306-017-1257-0. |
89 | KIM S, JANG W J, YU H, et al. Revealing metabolic perturbation following heavy methamphe-tamine abuse by human hair metabolomics and network analysis[J]. Int J Mol Sci,2020,21(17):6041. doi:10.3390/ijms21176041. |
90 | KIM S, JANG W J, YU H, et al. Integrated non-targeted and targeted metabolomics uncovers dynamic metabolic effects during short-term abstinence in methamphetamine self-administering rats[J]. J Proteome Res,2019,18(11):3913-3925. doi:10.1021/acs.jproteome.9b00363. |
91 | ZENG C, GONG X, DAI X, et al. Metabolomic analysis of the serum in rats with methamphetamine-induced conditioned place preference[J]. Neurochem J,2020,14(4):424-428. doi:10.1134/s1819712420040091. |
92 | KIM E Y, KWON D H, LEE B D, et al. Frequency of osteoporosis in 46 men with methamphe-tamine abuse hospitalized in a National Hospital[J]. Forensic Sci Int,2009,188(1/2/3):75-80. doi:10.1016/j.forsciint.2009.03.016. |
93 | TOMITA M, KATSUYAMA H, WATANABE Y, et al. Does methamphetamine affect bone metabolism?[J]. Toxicology,2014,319:63-68. doi:10.1016/j.tox.2014.01.014. |
94 | KIM M, JANG W J, SHAKYA R, et al. Current understanding of methamphetamine-associated metabo-lic changes revealed by the metabolomics approach[J]. Metabolites,2019,9(10):195. doi:10.3390/metabo9100195. |
95 | GHANBARI R, SUMNER S. Using metabolomics to investigate biomarkers of drug addiction[J]. Trends Mol Med,2018,24(2):197-205. doi:10.1016/j.molmed.2017.12.005. |
96 | MILLER M, LEE J Y, FULCHER J A, et al. Getting to the point: Methamphetamine injection is associated with biomarkers relevant to HIV pathogenesis[J]. Drug Alcohol Depend,2020,213:108133. doi:10.1016/j.drugalcdep.2020.108133. |
97 | HASIN Y, SELDIN M, LUSIS A. Multi-omics approaches to disease[J]. Genome Biol,2017,18(1):83. doi:10.1186/s13059-017-1215-1. |
98 | CHAUDHARY K, POIRION O B, LU L, et al. Deep learning-based multi-omics integration robustly predicts survival in liver cancer[J]. Clin Cancer Res,2018,24(6):1248-1259. doi:10.1158/1078-0432.CCR-17-0853. |
99 | OLIVIER M, ASMIS R, HAWKINS G A, et al. The need for multi-omics biomarker signatures in precision medicine[J]. Int J Mol Sci,2019,20(19):4781. doi:10.3390/ijms20194781. |
100 | TURANLI B, KARAGOZ K, GULFIDAN G, et al. A network-based cancer drug discovery: From integrated multi-omics approaches to precision medicine[J]. Curr Pharm Des,2018,24(32):3778-3790. doi:10.2174/1381612824666181106095959. |
101 | SCHÜRER S, KLINGEL K, SANDRI M, et al. Clinical characteristics, histopathological features, and clinical outcome of methamphetamine-associated cardiomyopathy[J]. JACC Heart Fail,2017,5(6):435-445. doi:10.1016/j.jchf.2017.02.017. |
102 | MOSZCZYNSKA A, CALLAN S P. Molecular, behavioral, and physiological consequences of me-thamphetamine neurotoxicity: Implications for treatment[J]. J Pharmacol Exp Ther,2017,362(3):474-488. doi:10.1124/jpet.116.238501. |
103 | ASTARITA G, AVANESIAN A, GRIMALDI B, et al. Methamphetamine accelerates cellular senescence through stimulation of de novo ceramide biosynthesis[J]. PLoS One,2015,10(2):e0116961. doi:10.1371/journal.pone.0116961. |
104 | HERLAND A, MAOZ B M, FITZGERALD E A, et al. Proteomic and metabolomic characterization of human neurovascular unit cells in response to methamphetamine[J]. Adv Biosyst,2020,4(9):e1900230. doi:10.1002/adbi.201900230. |
105 | CANZLER S, SCHOR J, BUSCH W, et al. Prospects and challenges of multi-omics data integration in toxicology[J]. Arch Toxicol,2020,94(2):371-388. doi:10.1007/s00204-020-02656-y. |
106 | SUBRAMANIAN I, VERMA S, KUMAR S, et al. Multi-omics data integration, interpretation, and its application[J]. Bioinform Biol Insights,2020,14:1-24. doi:10.1177/1177932219899051. |
107 | NICORA G, VITALI F, DAGLIATI A, et al. Integrated multi-omics analyses in oncology: A review of machine learning methods and tools[J]. Front Oncol,2020,10:1030. doi:10.3389/fonc.2020.01030. |
108 | HAMAMOTO R, KOMATSU M, TAKASAWA K, et al. Epigenetics analysis and integrated analysis of multiomics data, including epigenetic data, using artificial intelligence in the era of precision medicine[J]. Biomolecules,2019,10(1):62. doi:10.3390/biom10010062. |
[1] | 李雯, 李豪喆, 陈琛, 蔡伟雄. 面部微表情分析技术在法医精神病学领域的研究现状及应用展望[J]. 法医学杂志, 2023, 39(5): 493-500. |
[2] | 王中华, 李淑瑾. 人类身高推断的分子生物学研究进展[J]. 法医学杂志, 2023, 39(5): 487-492. |
[3] | 陈璐, 周喆, 王升启. 陈旧骸骨DNA身份鉴定的法医学进展[J]. 法医学杂志, 2023, 39(5): 478-486. |
[4] | 曾勇, 邹冬华, 范颖, 徐晴, 陶陆阳, 陈忆九, 李正东. 人体血管有限元建模及生物力学的研究进展与法医学应用[J]. 法医学杂志, 2023, 39(5): 471-477. |
[5] | 陈建波, 郭影, 陈再勇, 鲍人辉, 孔繁荣. 钩吻中毒死亡法医学鉴定1例[J]. 法医学杂志, 2023, 39(5): 509-511. |
[6] | 范飞, 武娟, 邓振华. 听力学客观检测技术在法医临床学中的应用进展[J]. 法医学杂志, 2023, 39(4): 360-366. |
[7] | 向青青, 陈立方, 苏秦, 杜宇坤, 梁沛妍, 康晓东, 石河, 徐曲毅, 赵建, 刘超, 陈晓晖. 微生物群落演替在死亡时间推断中的研究进展[J]. 法医学杂志, 2023, 39(4): 399-405. |
[8] | 苏秦, 陈倩玲, 吴伟斌, 向青青, 杨成梁, 乔东访, 李志刚. 原发性脑干损伤致死大鼠的脑干组织代谢组学分析[J]. 法医学杂志, 2023, 39(4): 373-381. |
[9] | 曹宇奇, 施妍, 向平, 郭寅龙. 机器学习辅助非靶向筛查策略用于芬太尼类物质识别鉴定的研究进展[J]. 法医学杂志, 2023, 39(4): 406-416. |
[10] | 李燃, 孙宏钰. 法医学亲缘关系鉴定方法和研究热点[J]. 法医学杂志, 2023, 39(3): 231-239. |
[11] | 马晓燕, 孙宏钰, 黎青. 常染色体STR三等位基因型在法医DNA分析中的研究进展[J]. 法医学杂志, 2023, 39(3): 240-246. |
[12] | 陈航, 胡婧, 乔正, 邓虹霄, 吕敏, 刘伟. 法医毒物领域生物基质标准物质的研究进展[J]. 法医学杂志, 2023, 39(2): 176-185. |
[13] | 高红艳, 刘光甫, 吴建, 陈鹏宇. 动物DNA分型及其在法医学中的研究进展[J]. 法医学杂志, 2023, 39(2): 161-167. |
[14] | 龙武, 瞿鹏飞, 马琳, 王蕊, 习严梅, 李玉华, 聂胜洁, 段婷, 杜进良, 唐雪, 赵静峰, 雷普平, 王跃兵. 一起云南不明原因猝死案件中4种野生菌的细胞毒性[J]. 法医学杂志, 2023, 39(2): 121-128. |
[15] | 程忠平, 刘燕飞, 徐兴敏, 莫耀南. 磁性纳米颗粒在法医学痕量分析中的应用进展[J]. 法医学杂志, 2023, 39(2): 168-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||