Journal of Forensic Medicine ›› 2024, Vol. 40 ›› Issue (6): 589-596.DOI: 10.12116/j.issn.1004-5619.2023.231203
• Original Article • Previous Articles Next Articles
Zhi-lu ZHOU1(), Dong-fei ZHANG2(
), Jie-min CHEN3, Ya-hui WANG3, Hong-xia HAO3, Tai-ang LIU4, Yu-heng HE4, Ding-nian LONG5, Rui-jue LIU3(
), Lei WAN3(
)
Received:
2023-12-22
Online:
2025-03-10
Published:
2024-12-25
Contact:
Rui-jue LIU, Lei WAN
CLC Number:
Zhi-lu ZHOU, Dong-fei ZHANG, Jie-min CHEN, Ya-hui WANG, Hong-xia HAO, Tai-ang LIU, Yu-heng HE, Ding-nian LONG, Rui-jue LIU, Lei WAN. MRI Application in Quantification of Epiphyseal Development in the Wrist and Bone Age Estimation of Han Male Adolescents in East China[J]. Journal of Forensic Medicine, 2024, 40(6): 589-596.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.fyxzz.cn/EN/10.12116/j.issn.1004-5619.2023.231203
年龄段/岁 | 样本量/例 |
---|---|
合计 | 124 |
6.0~<7.0 | 5 |
7.0~<8.0 | 13 |
8.0~<9.0 | 13 |
9.0~<10.0 | 12 |
10.0~<11.0 | 17 |
11.0~<12.0 | 17 |
12.0~<13.0 | 18 |
13.0~<14.0 | 9 |
14.0~<15.0 | 9 |
15.0~<16.0 | 5 |
16.0~<17.0 | 3 |
17.0~18.0 | 3 |
Tab. 1 The age distribution of volunteers
年龄段/岁 | 样本量/例 |
---|---|
合计 | 124 |
6.0~<7.0 | 5 |
7.0~<8.0 | 13 |
8.0~<9.0 | 13 |
9.0~<10.0 | 12 |
10.0~<11.0 | 17 |
11.0~<12.0 | 17 |
12.0~<13.0 | 18 |
13.0~<14.0 | 9 |
14.0~<15.0 | 9 |
15.0~<16.0 | 5 |
16.0~<17.0 | 3 |
17.0~18.0 | 3 |
变量 | 观察指标 | 变量 | 观察指标 |
---|---|---|---|
x1 | 桡骨干骺端最大宽度 | x13 | 第四掌骨骨骺最大宽度 |
x2 | 尺骨干骺端最大宽度 | x14 | 第五掌骨骨骺最大宽度 |
x3 | 第一掌骨干骺端最大宽度 | x15 | 桡骨骨骺发育分级 |
x4 | 第二掌骨干骺端最大宽度 | x16 | 尺骨骨骺发育分级 |
x5 | 第三掌骨干骺端最大宽度 | x17 | 第一掌骨骨骺发育分级 |
x6 | 第四掌骨干骺端最大宽度 | x18 | 第二掌骨骨骺发育分级 |
x7 | 第五掌骨干骺端最大宽度 | x19 | 第三掌骨骨骺发育分级 |
x8 | 桡骨骨骺最大宽度 | x20 | 第四掌骨骨骺发育分级 |
x9 | 尺骨骨骺最大宽度 | x21 | 第五掌骨骨骺发育分级 |
x10 | 第一掌骨骨骺最大宽度 | x22 | 身高 |
x11 | 第二掌骨骨骺最大宽度 | x23 | 体质量 |
x12 | 第三掌骨骨骺最大宽度 |
Tab. 2 The observed indicators
变量 | 观察指标 | 变量 | 观察指标 |
---|---|---|---|
x1 | 桡骨干骺端最大宽度 | x13 | 第四掌骨骨骺最大宽度 |
x2 | 尺骨干骺端最大宽度 | x14 | 第五掌骨骨骺最大宽度 |
x3 | 第一掌骨干骺端最大宽度 | x15 | 桡骨骨骺发育分级 |
x4 | 第二掌骨干骺端最大宽度 | x16 | 尺骨骨骺发育分级 |
x5 | 第三掌骨干骺端最大宽度 | x17 | 第一掌骨骨骺发育分级 |
x6 | 第四掌骨干骺端最大宽度 | x18 | 第二掌骨骨骺发育分级 |
x7 | 第五掌骨干骺端最大宽度 | x19 | 第三掌骨骨骺发育分级 |
x8 | 桡骨骨骺最大宽度 | x20 | 第四掌骨骨骺发育分级 |
x9 | 尺骨骨骺最大宽度 | x21 | 第五掌骨骨骺发育分级 |
x10 | 第一掌骨骨骺最大宽度 | x22 | 身高 |
x11 | 第二掌骨骨骺最大宽度 | x23 | 体质量 |
x12 | 第三掌骨骨骺最大宽度 |
变量 | r | 变量 | r |
---|---|---|---|
x1 | 0.773 | x13 | 0.741 |
x2 | 0.676 | x14 | 0.781 |
x3 | 0.654 | x15 | 0.495 |
x4 | 0.679 | x16 | 0.479 |
x5 | 0.535 | x17 | 0.656 |
x6 | 0.547 | x18 | 0.585 |
x7 | 0.693 | x19 | 0.585 |
x8 | 0.876 | x20 | 0.574 |
x9 | 0.812 | x21 | 0.585 |
x10 | 0.743 | x22 | 0.824 |
x11 | 0.776 | x23 | 0.746 |
x12 | 0.758 |
Tab. 3 Correlation between variables and age
变量 | r | 变量 | r |
---|---|---|---|
x1 | 0.773 | x13 | 0.741 |
x2 | 0.676 | x14 | 0.781 |
x3 | 0.654 | x15 | 0.495 |
x4 | 0.679 | x16 | 0.479 |
x5 | 0.535 | x17 | 0.656 |
x6 | 0.547 | x18 | 0.585 |
x7 | 0.693 | x19 | 0.585 |
x8 | 0.876 | x20 | 0.574 |
x9 | 0.812 | x21 | 0.585 |
x10 | 0.743 | x22 | 0.824 |
x11 | 0.776 | x23 | 0.746 |
x12 | 0.758 |
年龄段/岁 | 项目 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.0~<7.0 (n=5) | 最大值 | 1.82 | 0.84 | 0.86 | 0.85 | 0.88 | 0.63 | 0.69 | 1.67 | 0 | 0.67 | 0.76 | 0.80 | 0.58 | 0.52 |
最小值 | 1.55 | 0.65 | 0.69 | 0.65 | 0.70 | 0.55 | 0.53 | 1.26 | 0 | 0.39 | 0.55 | 0.55 | 0.49 | 0.42 | |
1.17±0.10 | 0.74±0.07 | 0.77±0.68 | 0.74±0.07 | 0.78±0.08 | 0.59±0.03 | 0.59±0.62 | 1.50±0.16 | 0 | 0.46±0.12 | 0.64±0.08 | 0.65±0.10 | 0.53±0.04 | 0.48±0.04 | ||
7.0~<8.0 (n=13) | 最大值 | 2.03 | 1.08 | 0.90 | 0.87 | 0.89 | 0.76 | 0.71 | 2.27 | 0.88 | 0.64 | 0.94 | 0.84 | 0.71 | 0.73 |
最小值 | 1.53 | 0.58 | 0.78 | 0.69 | 0.65 | 0.47 | 0.51 | 1.33 | 0 | 0.43 | 0.51 | 0.57 | 0.44 | 0.39 | |
1.77±0.13 | 0.78±0.02 | 0.87±0.25 | 0.76±0.06 | 0.77±0.08 | 0.64±0.08 | 0.62±0.06 | 1.76±0.28 | 0.20±0.03 | 0.75±0.04 | 0.66±0.12 | 0.68±0.08 | 0.57±0.09 | 0.49±0.08 | ||
8.0~<9.0 (n=13) | 最大值 | 1.93 | 0.98 | 0.93 | 0.91 | 0.95 | 0.73 | 0.70 | 2.06 | 0.99 | 0.81 | 0.79 | 0.83 | 0.73 | 0.68 |
最小值 | 1.60 | 0.65 | 0.70 | 0.68 | 0.58 | 0.52 | 0.55 | 1.46 | 0 | 0.57 | 0.56 | 0.58 | 0.47 | 0.41 | |
1.78±0.14 | 0.77±0.08 | 0.85±0.07 | 0.78±0.07 | 0.78±0.10 | 0.65±0.06 | 0.62±0.05 | 1.79±0.17 | 0.11±0.02 | 0.68±0.08 | 0.67±0.08 | 0.66±0.07 | 0.56±0.08 | 0.52±0.07 | ||
9.0~<10.0 (n=12) | 最大值 | 2.03 | 0.97 | 0.97 | 0.89 | 0.88 | 0.74 | 0.71 | 2.27 | 1.09 | 0.89 | 0.83 | 0.80 | 0.71 | 0.72 |
最小值 | 1.60 | 0.69 | 0.74 | 0.70 | 0.71 | 0.49 | 0.56 | 1.75 | 0 | 0.58 | 0.56 | 0.6 | 0.49 | 0.44 | |
1.81±0.13 | 0.85±0.07 | 0.88±0.08 | 0.80±0.06 | 0.78±0.06 | 0.60±0.09 | 0.63±0.05 | 1.96±0.18 | 0.53±0.04 | 0.76±0.11 | 0.72±0.10 | 0.67±0.07 | 0.57±0.07 | 0.58±0.08 | ||
10.0~<11.0 (n=17) | 最大值 | 2.31 | 1.14 | 1.06 | 0.94 | 0.94 | 0.76 | 0.86 | 2.40 | 1.18 | 1.05 | 0.98 | 0.98 | 0.76 | 0.73 |
最小值 | 1.62 | 0.78 | 0.79 | 0.68 | 0.74 | 0.58 | 0.55 | 1.64 | 0 | 0.65 | 0.68 | 0.64 | 0.42 | 0.45 | |
1.94±0.18 | 0.93±0.10 | 0.93±0.08 | 0.79±0.07 | 0.82±0.07 | 0.67±0.58 | 0.69±0.11 | 2.05±0.18 | 0.71±0.36 | 0.82±0.12 | 0.80±0.09 | 0.74±0.07 | 0.58±0.11 | 0.58±0.11 | ||
11.0~<12.0 (n=17) | 最大值 | 2.59 | 1.07 | 1.02 | 1.01 | 0.91 | 0.75 | 0.80 | 2.61 | 1.42 | 0.96 | 0.97 | 0.91 | 0.81 | 0.76 |
最小值 | 1.78 | 0.67 | 0.82 | 0.66 | 0.71 | 0.53 | 0.60 | 2.00 | 0.47 | 0.78 | 0.70 | 0.62 | 0.49 | 0.47 | |
2.02±0.22 | 0.89±0.14 | 0.94±0.07 | 0.82±0.10 | 0.79±0.08 | 0.64±0.07 | 0.71±0.07 | 2.21±0.18 | 1.00±0.21 | 0.77±0.03 | 0.80±0.08 | 0.79±0.08 | 0.61±0.09 | 0.65±0.09 | ||
12.0~<13.0 (n=18) | 最大值 | 2.24 | 1.60 | 1.07 | 1.06 | 1.06 | 0.85 | 0.93 | 2.85 | 1.32 | 1.21 | 1.12 | 1.06 | 0.92 | 0.91 |
最小值 | 1.66 | 0.75 | 0.82 | 0.76 | 0.58 | 0.65 | 0.54 | 2.06 | 0 | 0.78 | 0.70 | 0.58 | 0.59 | 0.52 | |
1.96±0.18 | 0.96±0.24 | 0.96±0.07 | 0.88±0.10 | 0.86±0.13 | 0.72±0.06 | 0.71±0.14 | 2.34±0.25 | 1.04±0.35 | 1.00±0.13 | 0.95±0.14 | 0.89±0.16 | 0.74±0.12 | 0.76±0.12 | ||
13.0~<14.0 (n=9) | 最大值 | 2.44 | 1.16 | 1.23 | 0.99 | 0.97 | 0.81 | 0.87 | 2.85 | 1.37 | 1.25 | 1.18 | 1.13 | 0.92 | 0.89 |
最小值 | 1.85 | 0.92 | 0.91 | 0.79 | 0.77 | 0.51 | 0.81 | 0.63 | 2.09 | 0.95 | 0.58 | 0.62 | 0.60 | 0.63 | |
2.13±0.17 | 1.06±0.76 | 1.04±0.10 | 0.90±0.08 | 0.85±0.07 | 0.71±0.10 | 0.76±0.07 | 2.49±0.22 | 1.21±0.16 | 1.01±0.20 | 0.95±0.20 | 0.88±0.17 | 0.78±0.90 | 0.72±0.11 | ||
14.0~<15.0 (n=9) | 最大值 | 2.54 | 1.42 | 1.31 | 1.08 | 1.07 | 0.86 | 0.84 | 2.82 | 1.73 | 1.31 | 1.21 | 1.06 | 0.91 | 0.99 |
最小值 | 2.04 | 0.87 | 0.86 | 0.81 | 0.76 | 0.54 | 0.72 | 2.45 | 0.99 | 0.98 | 0.83 | 0.69 | 0.64 | 0.68 | |
2.30±0.17 | 1.06±0.17 | 1.09±0.13 | 0.95±0.09 | 0.91±0.12 | 0.75±0.10 | 0.79±0.04 | 2.66±0.11 | 1.30±0.23 | 1.13±0.99 | 1.03±0.16 | 0.89±0.34 | 0.78±0.09 | 0.84±0.10 | ||
15.0~<16.0 (n=5) | 最大值 | 2.64 | 1.23 | 1.27 | 1.16 | 1.22 | 0.94 | 0.91 | 2.91 | 1.55 | 1.27 | 1.25 | 1.29 | 0.97 | 1.01 |
最小值 | 2.19 | 1.10 | 0.99 | 0.91 | 0.96 | 0.73 | 0.77 | 2.25 | 1.21 | 0.84 | 0.99 | 0.92 | 0.74 | 0.75 | |
2.47±0.17 | 1.16±0.05 | 1.16±0.11 | 1.02±0.12 | 1.05±0.10 | 0.81±0.08 | 0.84±0.05 | 2.77±0.16 | 1.37±0.14 | 1.15±0.18 | 1.13±0.10 | 1.10±0.14 | 0.88±0.08 | 0.89±0.11 | ||
16.0~<17.0 (n=3) | 最大值 | 2.80 | 1.77 | 1.29 | 1.15 | 1.14 | 1.11 | 1.09 | 2.98 | 1.92 | 1.29 | 1.14 | 1.25 | 1.14 | 1.04 |
最小值 | 2.33 | 1.05 | 0.96 | 1.08 | 1.05 | 0.91 | 0.78 | 2.72 | 1.06 | 0.98 | 0.96 | 0.88 | 0.70 | 0.70 | |
2.52±0.25 | 1.32±0.39 | 1.10±0.17 | 1.11±0.04 | 1.11±0.05 | 1.01±0.10 | 0.90±0.16 | 2.83±0.13 | 1.37±0.48 | 1.10±0.16 | 1.07±0.09 | 1.06±0.79 | 0.91±2.22 | 0.92±0.79 | ||
17.0~<18.0 (n=3) | 最大值 | 2.82 | 1.49 | 1.23 | 1.29 | 1.18 | 1.00 | 0.96 | 3.05 | 1.51 | 1.23 | 1.26 | 1.21 | 0.91 | 0.98 |
最小值 | 2.54 | 1.21 | 0.91 | 0.96 | 1.00 | 0.97 | 0.91 | 2.61 | 1.31 | 0.91 | 0.99 | 1.07 | 0.83 | 0.78 | |
2.66±0.14 | 1.32±0.15 | 1.02±0.16 | 1.09±0.17 | 1.07±0.10 | 0.94±0.06 | 0.90±0.08 | 2.84±0.22 | 1.44±0.12 | 1.05±0.16 | 1.13±0.14 | 1.15±0.07 | 0.87±0.04 | 0.87±0.10 |
Tab. 4 Distribution of variables in each age group
年龄段/岁 | 项目 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.0~<7.0 (n=5) | 最大值 | 1.82 | 0.84 | 0.86 | 0.85 | 0.88 | 0.63 | 0.69 | 1.67 | 0 | 0.67 | 0.76 | 0.80 | 0.58 | 0.52 |
最小值 | 1.55 | 0.65 | 0.69 | 0.65 | 0.70 | 0.55 | 0.53 | 1.26 | 0 | 0.39 | 0.55 | 0.55 | 0.49 | 0.42 | |
1.17±0.10 | 0.74±0.07 | 0.77±0.68 | 0.74±0.07 | 0.78±0.08 | 0.59±0.03 | 0.59±0.62 | 1.50±0.16 | 0 | 0.46±0.12 | 0.64±0.08 | 0.65±0.10 | 0.53±0.04 | 0.48±0.04 | ||
7.0~<8.0 (n=13) | 最大值 | 2.03 | 1.08 | 0.90 | 0.87 | 0.89 | 0.76 | 0.71 | 2.27 | 0.88 | 0.64 | 0.94 | 0.84 | 0.71 | 0.73 |
最小值 | 1.53 | 0.58 | 0.78 | 0.69 | 0.65 | 0.47 | 0.51 | 1.33 | 0 | 0.43 | 0.51 | 0.57 | 0.44 | 0.39 | |
1.77±0.13 | 0.78±0.02 | 0.87±0.25 | 0.76±0.06 | 0.77±0.08 | 0.64±0.08 | 0.62±0.06 | 1.76±0.28 | 0.20±0.03 | 0.75±0.04 | 0.66±0.12 | 0.68±0.08 | 0.57±0.09 | 0.49±0.08 | ||
8.0~<9.0 (n=13) | 最大值 | 1.93 | 0.98 | 0.93 | 0.91 | 0.95 | 0.73 | 0.70 | 2.06 | 0.99 | 0.81 | 0.79 | 0.83 | 0.73 | 0.68 |
最小值 | 1.60 | 0.65 | 0.70 | 0.68 | 0.58 | 0.52 | 0.55 | 1.46 | 0 | 0.57 | 0.56 | 0.58 | 0.47 | 0.41 | |
1.78±0.14 | 0.77±0.08 | 0.85±0.07 | 0.78±0.07 | 0.78±0.10 | 0.65±0.06 | 0.62±0.05 | 1.79±0.17 | 0.11±0.02 | 0.68±0.08 | 0.67±0.08 | 0.66±0.07 | 0.56±0.08 | 0.52±0.07 | ||
9.0~<10.0 (n=12) | 最大值 | 2.03 | 0.97 | 0.97 | 0.89 | 0.88 | 0.74 | 0.71 | 2.27 | 1.09 | 0.89 | 0.83 | 0.80 | 0.71 | 0.72 |
最小值 | 1.60 | 0.69 | 0.74 | 0.70 | 0.71 | 0.49 | 0.56 | 1.75 | 0 | 0.58 | 0.56 | 0.6 | 0.49 | 0.44 | |
1.81±0.13 | 0.85±0.07 | 0.88±0.08 | 0.80±0.06 | 0.78±0.06 | 0.60±0.09 | 0.63±0.05 | 1.96±0.18 | 0.53±0.04 | 0.76±0.11 | 0.72±0.10 | 0.67±0.07 | 0.57±0.07 | 0.58±0.08 | ||
10.0~<11.0 (n=17) | 最大值 | 2.31 | 1.14 | 1.06 | 0.94 | 0.94 | 0.76 | 0.86 | 2.40 | 1.18 | 1.05 | 0.98 | 0.98 | 0.76 | 0.73 |
最小值 | 1.62 | 0.78 | 0.79 | 0.68 | 0.74 | 0.58 | 0.55 | 1.64 | 0 | 0.65 | 0.68 | 0.64 | 0.42 | 0.45 | |
1.94±0.18 | 0.93±0.10 | 0.93±0.08 | 0.79±0.07 | 0.82±0.07 | 0.67±0.58 | 0.69±0.11 | 2.05±0.18 | 0.71±0.36 | 0.82±0.12 | 0.80±0.09 | 0.74±0.07 | 0.58±0.11 | 0.58±0.11 | ||
11.0~<12.0 (n=17) | 最大值 | 2.59 | 1.07 | 1.02 | 1.01 | 0.91 | 0.75 | 0.80 | 2.61 | 1.42 | 0.96 | 0.97 | 0.91 | 0.81 | 0.76 |
最小值 | 1.78 | 0.67 | 0.82 | 0.66 | 0.71 | 0.53 | 0.60 | 2.00 | 0.47 | 0.78 | 0.70 | 0.62 | 0.49 | 0.47 | |
2.02±0.22 | 0.89±0.14 | 0.94±0.07 | 0.82±0.10 | 0.79±0.08 | 0.64±0.07 | 0.71±0.07 | 2.21±0.18 | 1.00±0.21 | 0.77±0.03 | 0.80±0.08 | 0.79±0.08 | 0.61±0.09 | 0.65±0.09 | ||
12.0~<13.0 (n=18) | 最大值 | 2.24 | 1.60 | 1.07 | 1.06 | 1.06 | 0.85 | 0.93 | 2.85 | 1.32 | 1.21 | 1.12 | 1.06 | 0.92 | 0.91 |
最小值 | 1.66 | 0.75 | 0.82 | 0.76 | 0.58 | 0.65 | 0.54 | 2.06 | 0 | 0.78 | 0.70 | 0.58 | 0.59 | 0.52 | |
1.96±0.18 | 0.96±0.24 | 0.96±0.07 | 0.88±0.10 | 0.86±0.13 | 0.72±0.06 | 0.71±0.14 | 2.34±0.25 | 1.04±0.35 | 1.00±0.13 | 0.95±0.14 | 0.89±0.16 | 0.74±0.12 | 0.76±0.12 | ||
13.0~<14.0 (n=9) | 最大值 | 2.44 | 1.16 | 1.23 | 0.99 | 0.97 | 0.81 | 0.87 | 2.85 | 1.37 | 1.25 | 1.18 | 1.13 | 0.92 | 0.89 |
最小值 | 1.85 | 0.92 | 0.91 | 0.79 | 0.77 | 0.51 | 0.81 | 0.63 | 2.09 | 0.95 | 0.58 | 0.62 | 0.60 | 0.63 | |
2.13±0.17 | 1.06±0.76 | 1.04±0.10 | 0.90±0.08 | 0.85±0.07 | 0.71±0.10 | 0.76±0.07 | 2.49±0.22 | 1.21±0.16 | 1.01±0.20 | 0.95±0.20 | 0.88±0.17 | 0.78±0.90 | 0.72±0.11 | ||
14.0~<15.0 (n=9) | 最大值 | 2.54 | 1.42 | 1.31 | 1.08 | 1.07 | 0.86 | 0.84 | 2.82 | 1.73 | 1.31 | 1.21 | 1.06 | 0.91 | 0.99 |
最小值 | 2.04 | 0.87 | 0.86 | 0.81 | 0.76 | 0.54 | 0.72 | 2.45 | 0.99 | 0.98 | 0.83 | 0.69 | 0.64 | 0.68 | |
2.30±0.17 | 1.06±0.17 | 1.09±0.13 | 0.95±0.09 | 0.91±0.12 | 0.75±0.10 | 0.79±0.04 | 2.66±0.11 | 1.30±0.23 | 1.13±0.99 | 1.03±0.16 | 0.89±0.34 | 0.78±0.09 | 0.84±0.10 | ||
15.0~<16.0 (n=5) | 最大值 | 2.64 | 1.23 | 1.27 | 1.16 | 1.22 | 0.94 | 0.91 | 2.91 | 1.55 | 1.27 | 1.25 | 1.29 | 0.97 | 1.01 |
最小值 | 2.19 | 1.10 | 0.99 | 0.91 | 0.96 | 0.73 | 0.77 | 2.25 | 1.21 | 0.84 | 0.99 | 0.92 | 0.74 | 0.75 | |
2.47±0.17 | 1.16±0.05 | 1.16±0.11 | 1.02±0.12 | 1.05±0.10 | 0.81±0.08 | 0.84±0.05 | 2.77±0.16 | 1.37±0.14 | 1.15±0.18 | 1.13±0.10 | 1.10±0.14 | 0.88±0.08 | 0.89±0.11 | ||
16.0~<17.0 (n=3) | 最大值 | 2.80 | 1.77 | 1.29 | 1.15 | 1.14 | 1.11 | 1.09 | 2.98 | 1.92 | 1.29 | 1.14 | 1.25 | 1.14 | 1.04 |
最小值 | 2.33 | 1.05 | 0.96 | 1.08 | 1.05 | 0.91 | 0.78 | 2.72 | 1.06 | 0.98 | 0.96 | 0.88 | 0.70 | 0.70 | |
2.52±0.25 | 1.32±0.39 | 1.10±0.17 | 1.11±0.04 | 1.11±0.05 | 1.01±0.10 | 0.90±0.16 | 2.83±0.13 | 1.37±0.48 | 1.10±0.16 | 1.07±0.09 | 1.06±0.79 | 0.91±2.22 | 0.92±0.79 | ||
17.0~<18.0 (n=3) | 最大值 | 2.82 | 1.49 | 1.23 | 1.29 | 1.18 | 1.00 | 0.96 | 3.05 | 1.51 | 1.23 | 1.26 | 1.21 | 0.91 | 0.98 |
最小值 | 2.54 | 1.21 | 0.91 | 0.96 | 1.00 | 0.97 | 0.91 | 2.61 | 1.31 | 0.91 | 0.99 | 1.07 | 0.83 | 0.78 | |
2.66±0.14 | 1.32±0.15 | 1.02±0.16 | 1.09±0.17 | 1.07±0.10 | 0.94±0.06 | 0.90±0.08 | 2.84±0.22 | 1.44±0.12 | 1.05±0.16 | 1.13±0.14 | 1.15±0.07 | 0.87±0.04 | 0.87±0.10 |
年龄段/岁 | x15 | x16 | x17 | x18 | x19 | x20 | x21 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | |
6.0~<7.0 (n=5) | 5 | - | - | 5 | - | - | 5 | - | - | 5 | - | - | 5 | - | - | - | - | - | - | - | - |
7.00~<8.0 (n=13) | 13 | - | - | 13 | - | - | 13 | - | - | 13 | - | - | 13 | - | - | - | - | - | - | - | - |
8.00~<9.0 (n=13) | 13 | - | - | 13 | - | - | 13 | - | - | 13 | - | - | 13 | - | - | - | - | - | - | - | - |
9.00~<10.0 (n=12) | 12 | - | - | 12 | - | - | 12 | - | - | 12 | - | - | 12 | - | - | - | - | - | - | - | - |
10.0~<11.0 (n=17) | 17 | - | - | 17 | - | - | 17 | - | - | 17 | - | - | 17 | - | - | - | - | - | - | - | - |
11.0~<12.0 (n=17) | 17 | - | - | 17 | - | - | 17 | - | - | 17 | - | - | 17 | - | - | - | - | - | - | - | - |
12.0~<13.0 (n=18) | 18 | - | - | 18 | - | - | 16 | 2 | - | 17 | 1 | - | 17 | 1 | - | 17 | 1 | - | 17 | 1 | - |
13.0~<14.0 (n=9) | 9 | - | - | 9 | - | - | 7 | 2 | - | 7 | 2 | - | 7 | 2 | - | 8 | 1 | - | 7 | 2 | - |
14.0~<15.0 (n=9) | 5 | 4 | - | 6 | 3 | - | 1 | 4 | 4 | 4 | 1 | 4 | 4 | 1 | 4 | 4 | 1 | 4 | 4 | 1 | 4 |
15.0~<16.0 (n=5) | 3 | 1 | 1 | 3 | 1 | 1 | - | 1 | 4 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 |
16.0~<17.0 (n=3) | - | 1 | 2 | - | 2 | 1 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 |
17.0~<18.0 (n=3) | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 |
Tab. 5 Age distribution of epiphyseal closure of the wrist joint in 124 volunteers
年龄段/岁 | x15 | x16 | x17 | x18 | x19 | x20 | x21 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | 0级 | 1级 | 2级 | |
6.0~<7.0 (n=5) | 5 | - | - | 5 | - | - | 5 | - | - | 5 | - | - | 5 | - | - | - | - | - | - | - | - |
7.00~<8.0 (n=13) | 13 | - | - | 13 | - | - | 13 | - | - | 13 | - | - | 13 | - | - | - | - | - | - | - | - |
8.00~<9.0 (n=13) | 13 | - | - | 13 | - | - | 13 | - | - | 13 | - | - | 13 | - | - | - | - | - | - | - | - |
9.00~<10.0 (n=12) | 12 | - | - | 12 | - | - | 12 | - | - | 12 | - | - | 12 | - | - | - | - | - | - | - | - |
10.0~<11.0 (n=17) | 17 | - | - | 17 | - | - | 17 | - | - | 17 | - | - | 17 | - | - | - | - | - | - | - | - |
11.0~<12.0 (n=17) | 17 | - | - | 17 | - | - | 17 | - | - | 17 | - | - | 17 | - | - | - | - | - | - | - | - |
12.0~<13.0 (n=18) | 18 | - | - | 18 | - | - | 16 | 2 | - | 17 | 1 | - | 17 | 1 | - | 17 | 1 | - | 17 | 1 | - |
13.0~<14.0 (n=9) | 9 | - | - | 9 | - | - | 7 | 2 | - | 7 | 2 | - | 7 | 2 | - | 8 | 1 | - | 7 | 2 | - |
14.0~<15.0 (n=9) | 5 | 4 | - | 6 | 3 | - | 1 | 4 | 4 | 4 | 1 | 4 | 4 | 1 | 4 | 4 | 1 | 4 | 4 | 1 | 4 |
15.0~<16.0 (n=5) | 3 | 1 | 1 | 3 | 1 | 1 | - | 1 | 4 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 3 |
16.0~<17.0 (n=3) | - | 1 | 2 | - | 2 | 1 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 |
17.0~<18.0 (n=3) | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 | - | - | 3 |
模型 | ACC_1.0岁/% | ACC_1.5岁/% | MAE/岁 |
---|---|---|---|
LR | 70.2 | 92.3 | 0.71 |
CRT | 72.6 | 84.7 | 0.83 |
RF | 86.3 | 93.5 | 0.59 |
SVM | 88.7 | 96.0 | 0.33 |
Tab. 6 Performance comparison of each model
模型 | ACC_1.0岁/% | ACC_1.5岁/% | MAE/岁 |
---|---|---|---|
LR | 70.2 | 92.3 | 0.71 |
CRT | 72.6 | 84.7 | 0.83 |
RF | 86.3 | 93.5 | 0.59 |
SVM | 88.7 | 96.0 | 0.33 |
1 | MANSOURVAR M, ISMAIL M A, HERAWAN T, et al. Automated bone age assessment: Motivation, taxonomies, and challenges[J]. Comput Math Methods Med,2013,2013:391626. doi:10.1155/2013/391626 . |
2 | MALINA R M. Skeletal age and age verification in youth sport[J]. Sports Med,2011,41(11):925-947. doi:10.2165/11590300-000000000-00000 . |
3 | 王文焕,林惠恩,符孔,等. 儿童中枢性性早熟垂体MRI影像学特征及其与骨龄的相关性[J].分子影像学杂志,2022,45(1):101-105. |
doi:10.12122/j.issn.1674-4500.2022.01.20.WANG W H, LIN H E, FU K, et al. MRI imaging features of the pituitary gland in children with central precocious puberty and their correlation with bone age[J]. Fenzi Yingxiangxue Zazhi,2022,45(1):101-105. | |
4 | TIMME M, OTTOW C, SCHULZ R, et al. Magnetic resonance imaging of the distal radial epiphysis: A new criterion of maturity for determining whether the age of 18 has been completed?[J]. Int J Legal Med,2017,131(2):579-584. doi:10.1007/s00414-016-1502-5 . |
5 | 朱广友,范利华,张国桢,等. 青少年骨发育X线分级方法[J].法医学杂志,2008,24(1):18-24. doi:10.3969/ |
j.issn.1004-5619.2008.01.006. | |
ZHU G Y, FAN L H, ZHANG G Z, et al. Staging methods of skeletal growth by X-ray in teenagers[J]. Fayixue Zazhi,2008,24(1):18-24. | |
6 | 鲁婷,范飞,施蕾,等. MRI在法医学活体年龄推断中的研究进展[J].法医学杂志,2020,36(4):549-558. doi:10.12116/j.issn.1004-5619.2020.04.022 . |
LU T, FAN F, SHI L, et al. Research progress on the forensic age estimation in living individuals using MRI[J]. Fayixue Zazhi,2020,36(4):549-558. | |
7 | STERN D, PAYER C, GIULIANI N, et al. Automatic age estimation and majority age classification from multi-factorial MRI data[J]. IEEE J Biomed Health Inform,2019,23(4):1392-1403. doi:10.1109/JBHI.2018.2869606 . |
8 | DALLORA A L, ANDERBERG P, KVIST O, et al. Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis[J]. PLoS One,2019,14(7):e0220242. doi:10.1371/journal.pone.0220242 . |
9 | TOMEI E, SARTORI A, NISSMAN D, et al. Value of MRI of the hand and the wrist in evaluation of bone age: Preliminary results[J]. J Magn Reson Imaging,2014,39(5):1198-1205. doi:10.10 02/jmri.24286 . |
10 | PENNOCK A T, BOMAR J D, MANNING J D. The creation and validation of a knee bone age atlas utilizing MRI[J]. J Bone Joint Surg Am,2018,100(4):e20. doi:10.2106/JBJS.17.00693 . |
11 | SERIN J, RÉROLLE C, PUCHEUX J, et al. Contribution of magnetic resonance imaging of the wrist and hand to forensic age assessment[J]. Int J Legal Med,2016,130(4):1121-1128. doi:10.1007/s00414-016-1362-z . |
12 | LU T, SHI L, ZHAN M J, et al. Age estimation based on magnetic resonance imaging of the ankle joint in a modern Chinese Han population[J]. Int J Leg Med,2020,134(5):1843-1852. doi:10.1007/s00414-020-02364-3 . |
13 | 胥少汀,葛宝丰,徐印坎. 实用骨科学[M].3版.北京:人民军医出版社,2005:1-60. |
XU S T, GE B F, XU Y K. Practical orthopedics[M]. 3rd ed. Beijing: People’s Military Medical Press,2005:1-60. | |
14 | 王年,樊旭晨,张玉明,等. 基于足迹图像的FtH-Net预测身高方法[J].华南理工大学学报(自然科学版),2020,48(6):106-113,133. doi: 10.12141/j.issn.1000- |
565X.190860. WANG N, FAN X C, ZHANG Y M, et al. FtH-Net method for predicting height based on footprint image[J]. Huanan Ligong Daxue Xuebao (Natural science edition),2020,48(6):106-113,133. | |
15 | 彭钊,占梦军,张奎,等. 法医年龄评估中非诊疗目的的放射检查[J].证据科学,2019,27(3):347-358. |
doi:10.3969/j.issn.1674-1226.2019.03.008.PENG Z, ZHAN M J, ZHANG K, et al. Ionizing radiation examination without medical indication in forensic age estimation[J]. Zhengju Kexue,2019,27(3):347-358. | |
16 | WIDEK T, GENET P, EHAMMER T, et al. Bone age estimation with the Greulich-Pyle atlas using 3T MR images of hand and wrist[J]. Forensic Sci Int,2021,319:110654. doi:10.1016/j.forsciint.2020.110654 . |
17 | DER MAUER M A, WELL E J V, HERRMANN J, et al. Automated age estimation of young indivi-duals based on 3D knee MRI using deep learning[J]. Int J Legal Med,2021,135(2):649-663. doi:10.1007/s00414-020-02465-z . |
18 | DE TOBEL J, FIEUWS S, HILLEWIG E, et al. Multi-factorial age estimation: A Bayesian approach combining dental and skeletal magnetic resonance imaging[J]. Forensic Sci Int,2020,306:110054. doi:10.1016/j.forsciint.2019.110054 . |
19 | WAN J, ZHAO Y, FENG Q, et al. Potential value of conventional ultrasound in estimation of bone age in patients from birth to near adulthood[J]. Ultrasound Med Biol,2019,45(11):2878-2886. doi:10.1016/j.ultrasmedbio.2019.07.681 . |
20 | 武鹏,刘新顶,赵德利,等. AI辅助下医生对骨龄评估的效能提升[J].重庆医科大学学报,2024,49(1):60-64. doi:10.13406/j.cnki.cyxb.003402 . |
WU P, LIU X D, ZHAO D L, et al. Improvement in bone age assessment efficiency of physicians based on the artificial intelligence-assisted bone age assessment system[J]. Chongqing Yike Daxue Xuebao,2024,49(1):60-64. | |
21 | 刁亚茹,鲁婷,邓振华,等. 基于深度学习实现肋软骨CT图像自动化骨龄推断[J].中国法医学杂志,2023,38(6):628-632. doi:10.13618/j.issn.1001-5728.2023.06.005 . |
DIAO Y R, LU T, DENG Z H, et al. Automatic bone age estimation of costal cartilage CT images based on deep learning[J]. Zhongguo Fayixue Zazhi,2023,38(6):628-632. | |
22 | 雷义洋,申玉姝,王亚辉,等. 基于主成分分析和支持向量机实现膝关节骨龄评估回归算法[J].法医学杂志,2019,35(2):194-199. doi:10.12116/j.issn.1004-5619.2019.02.012 . |
LEI Y Y, SHEN Y S, WANG Y H, et al. Regression algorithm of bone age estimation of knee-joint based on principal component analysis and support vector machine[J]. Fayixue Zazhi,2019,35(2):194-199. | |
23 | ŠTERN D, PAYER C, URSCHLER M. Automated age estimation from MRI volumes of the hand[J]. Med Image Anal,2019,58:101538. doi:10.1016/j.media.2019.101538 . |
24 | URSCHLER M, KRAUSKOPF A, WIDEK T, et al. Applicability of Greulich-Pyle and Tanner-White-house grading methods to MRI when assessing hand bone age in forensic age estimation: A pilot study[J]. Forensic Sci Int,2016,266:281-288. doi:10.1016/j.forsciint.2016.06.016 . |
25 | HOJREH A, GAMPER J, SCHMOOK M T, et al. Hand MRI and the Greulich-Pyle atlas in skeletal age estimation in adolescents[J]. Skeletal Radiol,2018,47(7):963-971. doi:10.1007/s00256-017-2867-3 . |
26 | DE TOBEL J, HILLEWIG E, DE HAAS M B, et al. Forensic age estimation based on T1 SE and VIBE wrist MRI: Do a one-fits-all staging technique and age estimation model apply?[J]. Eur Radiol,2019,29(6):2924-2935. doi:10.1007/s00330-018-5944-7 . |
27 | URSCHLER M, GRASSEGGER S, ŠTERN D. What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents[J]. Ann Hum Biol,2015,42(4):358-367. doi:10.3109/03014460.2015.1043945 . |
[1] | Ze-ren YANG, Dong GAO, Qing XIA, Dan RAN, Yan-liang SHENG, Wen-tao XIA. Effects of Different Test Positions on Quantitative Muscle Strength of Wrist and Finger Flexor Muscle Groups and Its Standardization [J]. Journal of Forensic Medicine, 2024, 40(3): 237-244,253. |
[2] | Jia-xuan HAN, Shi-hui SHEN, Yi-wen WU, Xiao-dan SUN, Tian-nan CHEN, Jiang TAO. Adolescents and Children Age Estimation Using Machine Learning Based on Pulp and Tooth Volumes on CBCT Images [J]. Journal of Forensic Medicine, 2024, 40(2): 143-148. |
[3] | Lei SHI, Ye XUE, Li-rong QIU, Ting LU, Fei FAN, Yu-chi ZHOU, Zhen-hua DENG. Research Progress on Dental Age Estimation Based on MRI Technology [J]. Journal of Forensic Medicine, 2024, 40(2): 112-117. |
[4] | Xuan WEI, Yu-shan CHEN, Jie DING, Chang-xing SONG, Jun-jing WANG, Zhao PENG, Zhen-hua DENG, Xu YI, Fei FAN. Age Estimation by Machine Learning and CT-Multiplanar Reformation of Cranial Sutures in Northern Chinese Han Adults [J]. Journal of Forensic Medicine, 2024, 40(2): 128-134. |
[5] | Yu-xin GUO, Wen-qing BU, Yu TANG, Di WU, Hui YANG, Hao-tian MENG, Yu-cheng GUO. Dental Age Estimation in Northern Chinese Han Children and Adolescents Using Demirjian’s Method Combined with Machine Learning Algorithms [J]. Journal of Forensic Medicine, 2024, 40(2): 135-142. |
[6] | Dan-yang LI, Yu PAN, Hui-ming ZHOU, Lei WAN, Cheng-tao LI, Mao-wen WANG, Ya-hui WANG. Application of Medical Statistical and Machine Learning Methods in the Age Estimation of Living Individuals [J]. Journal of Forensic Medicine, 2024, 40(2): 118-127. |
[7] | Huai-han ZHANG, Yong-jie CAO, Ji ZHANG, Jian XIONG, Ji-wei MA, Xiao-tong YANG, Ping HUANG, Yong-gang MA. Adults Ischium Age Estimation Based on Deep Learning and 3D CT Reconstruction [J]. Journal of Forensic Medicine, 2024, 40(2): 154-163. |
[8] | De-min HUO, Kai-jun MA, Jing-lan XU, Xu SONG, Xiao-yan MAO, Xia LIU, Kai-fang ZHAO, Jian ZHANG, Meng DU. Determining Whether an Individual is 18 Years or Older Based on the Third Molar Root Pulp Visibility in East China [J]. Journal of Forensic Medicine, 2024, 40(2): 149-153. |
[9] | Yi-hang HUANG, Wei-bo LIANG, Hui JIAN, Sheng-qiu QU. Modeling Methods and Influencing Factors for Age Estimation Based on DNA Methylation [J]. Journal of Forensic Medicine, 2023, 39(6): 601-607. |
[10] | Xing-yu MA, Hao CHENG, Zhong-duo ZHANG, Ye-ming LI, Dong ZHAO. Research Progress of Metabolomics Techniques Combined with Machine Learning Algorithm in Wound Age Estimation [J]. Journal of Forensic Medicine, 2023, 39(6): 596-600. |
[11] | Zi-wei WANG, Cheng-tao LI, Xi-ling LIU. Cross-Platform Application of DNA Methylation Age Estimation Model in Eastern Chinese Han Population [J]. Journal of Forensic Medicine, 2023, 39(5): 441-446. |
[12] | Qing-qing XIANG, Li-fang CHEN, Qin SU, Yu-kun DU, Pei-yan LIANG, Xiao-dong KANG, He SHI, Qu-yi XU, Jian ZHAO, Chao LIU, Xiao-hui CHEN. Research Progress on Microbial Community Succession in the Postmortem Interval Estimation [J]. Journal of Forensic Medicine, 2023, 39(4): 399-405. |
[13] | Yu-qi CAO, Yan SHI, Ping XIANG, Yin-long GUO. Research Progress on Machine Learning Assisted Non-Targeted Screening Strategy for Identification of Fentanyl Analogs [J]. Journal of Forensic Medicine, 2023, 39(4): 406-416. |
[14] | Yong-gang MA, Yong-jie CAO, Yi-hua ZHAO, Xin-jun ZHOU, Bin HUANG, Gao-chao ZHANG, Ping HUANG, Ya-hui WANG, Kai-jun MA, Feng CHEN, Dong-chuan ZHANG, Ji ZHANG. Sex Estimation of Medial Aspect of the Ischiopubic Ramus in Adults Based on Deep Learning [J]. Journal of Forensic Medicine, 2023, 39(2): 129-136. |
[15] | Hong-xia HAO, Ya-hui WANG, Zhi-lu ZHOU, Tai-ang LIU, Jin CHEN, Yu-heng HE, Lei WAN, Wen-tao XIA. Research Progress of Age Estimation in the Living by Knee Joint MRI [J]. Journal of Forensic Medicine, 2023, 39(1): 66-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||